
Decomposing motor units through elimination for real-time intention driven assistive neurotechnology

Motivation for motor units as a control signal

EMG decomposition as a BSS problem

Goal: Find unmixing matrix B to recover motor unit sources

$$X(t) = HS(t) + N(t)$$
$$\widehat{S}(t) = BX(t)$$

$$X \in \mathbb{R}^{C \times N}$$
 $H \in \mathbb{R}^{C \times M}$ $S \in \mathbb{R}^{M \times N}$

C: number of EMG channels

N: number of samples in time

M: number of motor unit sources

MUelim algorithm

Input EMG data X is first divided into non-overlapping windows followed by an extend-lag procedure to incorporate temporal information

$$X_{ext}(t) = [X_{binned}(t), X_{binned}(t-\tau), ..., X_{binned}(t-(R-1)\tau)]^{\mathsf{T}}$$

 $X_{binned} \in \mathbb{R}^{W \times C \times L}$ W: number of windows

L: size of window

 $X_{ext} \in \mathbb{R}^{W \times CR \times L}$ R: extension factor

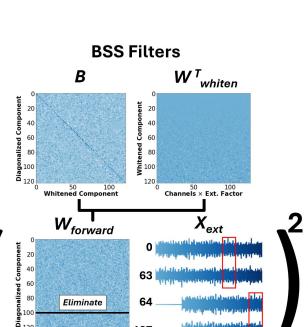
τ: lag

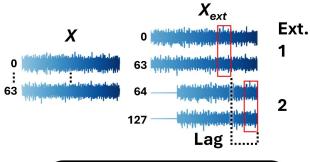
SPD matrix computation on X_{ext} and whitening

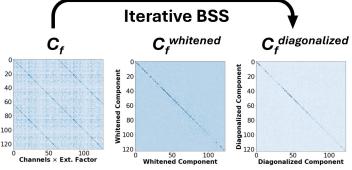
$$C_f = \frac{1}{W} \sum_{k=1}^{W} X'_{ext,f}[k] X'_{ext,f}[k]^H$$

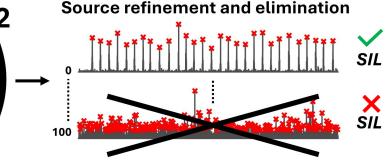
$$W_{whiten} = V\Lambda^{-1/2}V^{T}$$
, $C_f^{whiten} = W_{whiten}C_fW_{whiten}^{T}$

Approximate joint diagonalization

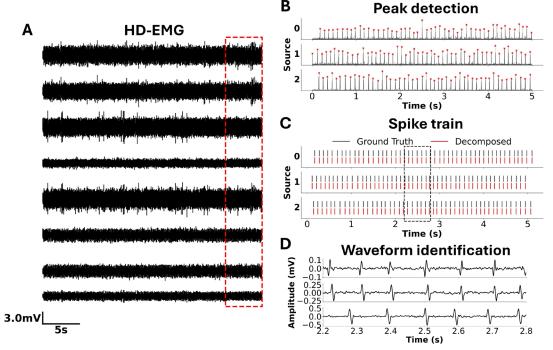

$$\mathcal{L}(\mathbf{B}) = \frac{1}{2n} \sum_{i=1}^{n} [\log \det diag \left(\mathbf{B} \mathbf{C}_{i} \mathbf{B}^{\mathsf{T}} \right) - \log \det \left(\mathbf{B} \mathbf{C}_{i} \mathbf{B}^{\mathsf{T}} \right)]$$

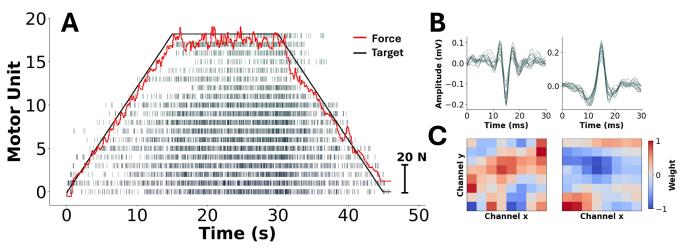

$$W_{forward} = BW_{whiten}^{\top}$$


Improvement iteration and elimination


$$\gamma_{i}(k) = \left(W_{forward}X_{ext}\right)^{2}$$

MUelim algorithm overview

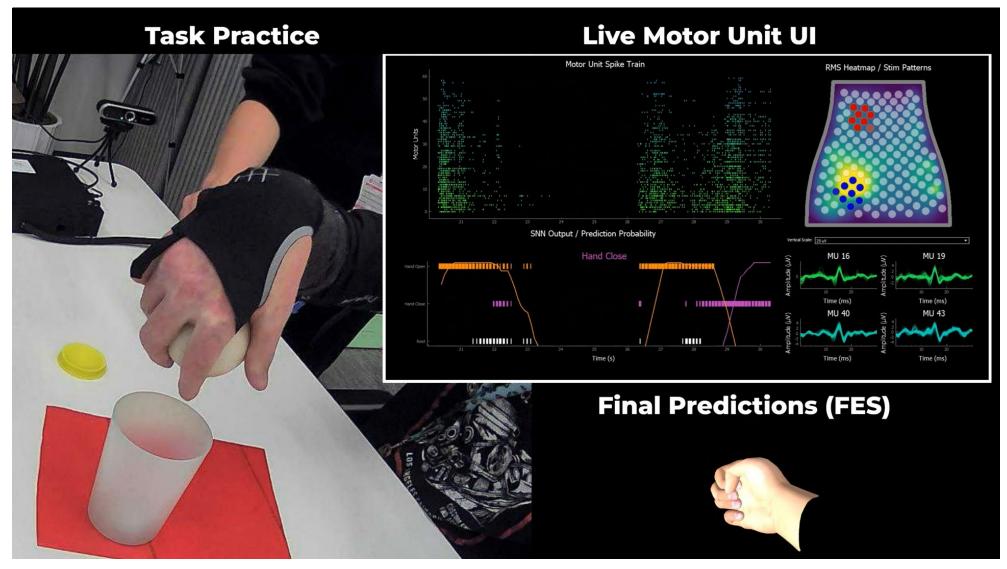



Algorithm evaluation

Simulation Experiments

Method	Accuracy (%)	FP per source	FN per source
MUelim	99.99 ± 0.01	0.99 ± 0.14	0.03 ± 0.02
SCD	99.99 ± 0.01	0.93 ± 0.13	0.03 ± 0.02
MUEdit	98.98 ± 0.07	0.00 ± 0.00	3.06 ± 0.20

HD-EMG Grid Experiments



		ct. Lag	Ramp Experiment		MVC Experiment			
Method	Ext.		MUs	Time (min.)	SIL	MUs	Time (min.)	SIL
MUelim	2	4	12.8 ± 2.7	1.3 ± 0.1	0.91 ± 0.01	7.8 ± 1.8	0.3 ± 0.0	0.91 ± 0.01
	4	4	18.8 ± 4.2	3.1 ± 0.2	0.92 ± 0.01	11.2 ± 2.2	0.7 ± 0.0	0.91 ± 0.01
SCD	6	1	2.4 ± 0.5	5.5 ± 0.6	0.89 ± 0.01	5.6 ± 1.4	9.2 ± 3.0	0.90 ± 0.02
	16	1	3.2 ± 0.8	14.6 ± 3.6	0.90 ± 0.01	5.6 ± 1.7	5.7 ± 1.1	0.90 ± 0.01
MUEdit	6	1	3.2 ± 2.0	72.3 ± 4.5	0.88 ± 0.01	24.3 ± 9.6	10.9 ± 2.2	0.89 ± 0.00
	16	1	18.2 ± 5.7	112.3 ± 28.5	0.89 ± 0.03	12.5 ± 3.2	30.9 ± 5.5	0.93 ± 0.01

Closed-loop FES for spinal cord injury

Acknowledgments

Battelle Neurotechnology Team

Sam Colachis, MS

Sedona Cady, PhD

Collin Dunlap, PhD

David Friedenberg, PhD

Mary Heimann, MS

Philip Putnam, PhD

Bryan Schlink, PhD

Collaborators

Eric Meyers, PhD

Austin Bollinger, MS

José Pons, PhD

Jackson Levine, PhD

Lauren Wengerd, PhD, OTR/L

NeuroTech Institute

BATTELE It can be done