# Learning to Better Search with Language Models via Guided Reinforced Self-Training

Seungyong Moon <sup>1</sup> Bumsoo Park <sup>2</sup> Hyun Oh Song <sup>1</sup>

<sup>1</sup>Seoul National University

<sup>2</sup>KRAFTON



### TL;DR

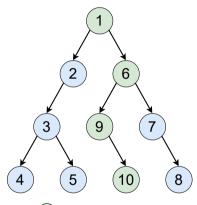
We propose a novel fine-tuning algorithm that enhances the search capability of language models through guided data generation.

## Stream of search (SoS)

- An optimal solution  $S = (s_1, ..., s_n)$ , where  $s_i$  is a single reasoning step.
- A search trace  $Z = (z_1, \dots, z_m)$ , where  $z_i$  is a tree search operation.
- Train the model  $\pi_{\theta}$  to imitate Z via SFT.

$$\max_{\theta} \mathbb{E}_{(q,Z) \sim \mathcal{D}} \left[ \log \pi_{\theta}(Z \mid q) \right]$$

• Show better generalization than S.



: Correct node

: Incorrect node

## Training with self-generated data

- Reinforced self-training (ReST)
  - Generate, filter, and fine-tune via SFT over multiple iterations.

$$\max_{\theta} \mathbb{E}_{q \sim \mathcal{D}, Z \sim \pi_{\theta}(\cdot|q)} \left[ \mathbb{1}_{R(Z|q) > \tau} \cdot \log \pi_{\theta}(Z \mid q) \right]$$

- Reinforcement fine-tuning (RFT)
  - Directly maximize rewards via RL (e.g., PPO or GRPO).

$$\max_{\theta} \mathbb{E}_{q \sim \mathcal{D}, Z \sim \pi_{\theta}(\cdot \mid q)} \left[ R(Z \mid q) - \beta \cdot D_{\text{KL}}(\pi_{\theta}(\cdot \mid q) \parallel \pi_{\text{ref}}(\cdot \mid q)) \right]$$

#### Countdown

 Goal: Combine the input numbers using the four basic arithmetic operations to reach the target number.

• Simple yet challenging: even GPT-4 struggles.

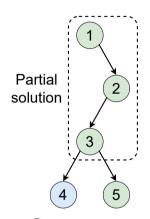
Input: 84,2,14,15 Target: 26 Solution: 84-2\*(14+15)=26 84.2.14.15 14+15=29 84,2,29 2\*29=58 84.58 84-58=26 26

#### **Motivation**

- Search traces generalize well but are noisy and suboptimal.
- Consequently, models trained on such traces suffer from inefficient search.
- Can fine-tuning methods like ReST or RFT fundamentally improve search efficiency?
- To address this, we leverage optimal solutions as guidance.

#### **Motivation**

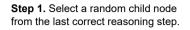
- First attempt: Provide the model with partial optimal solutions as hints.
- This significantly improves performance by effectively reducing the search space.
- This motivates us to utilize such high-quality, self-generated traces for fine-tuning.
- However, these traces often have low likelihood under the model distribution.



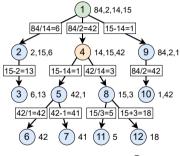
: Correct node

: Incorrect node

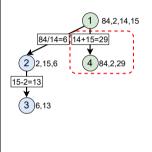
## **Guided reinforced self-training (Guided-ReST)**



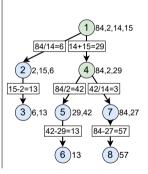
Input: 84,2,14,15 Target: 26 Solution: 84-2\*(14+15)=26



**Step 2.** Replace the selected node to the next reasoning step and truncate the search trace up to it.



**Step 3.** Continue the search from the modified node.



: Correct node

: Incorrect node

: Selected node

It progressively integrates each step of the optimal solution into the search trace, yielding high-quality, high-likelihood traces.

## **Guided reinforced self-training (Guided-ReST)**

- Fine-tune the model on the resulting search traces via SFT.
- Repeat this procedure for multiple iterations.

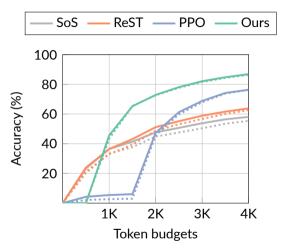
## **RL** fine-tuning

- Apply RFT using PPO on top of Guided-ReST.
- Use operation-level MDP instead of token-level MDP.
  - The log importance ratio is computed as the sum over tokens.
- Remove the KL penalty term, following recent practice.

## Application to code self-repair

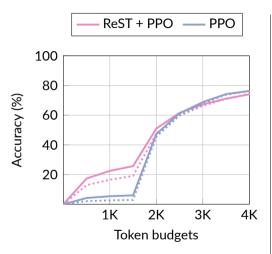
- We extend our method to a more realistic domain: code self-repair.
- Consider episode-level search rather than stepwise search.

## Countdown results (Llama-3.2-1B)

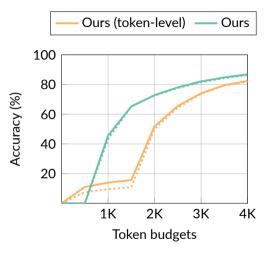


Our method improves the upper bound and achieves  $2 \times$  token efficiency.

# Countdown results (Llama-3.2-1B)



ReST does not benefit from PPO.



Operation-level MDP is essential.

# Countdown results (Llama-3.2-1B)

| Method      | Seen target |      |      |      |      |      | Unseen target |      |      |      |      |      |
|-------------|-------------|------|------|------|------|------|---------------|------|------|------|------|------|
|             | 1           | 2    | 4    | 8    | 16   | 32   | 1             | 2    | 4    | 8    | 16   | 32   |
| SoS         | 55.3        | 63.8 | 69.6 | 73.3 | 75.5 | 77.1 | 53.2          | 62.3 | 68.7 | 73.0 | 75.6 | 77.5 |
| ReST        | 62.3        | 67.7 | 71.3 | 73.6 | 75.3 | 76.6 | 60.8          | 66.7 | 70.8 | 73.5 | 75.5 | 77.0 |
| Guided-ReST | 62.7        | 75.3 | 84.6 | 90.8 | 94.7 | 96.8 | 61.0          | 74.1 | 83.8 | 90.3 | 94.3 | 96.8 |

Our method achieves higher pass@k accuracy.

# Code self-repair results (Qwen2.5-7B)

| Method      | CodeContests |      |      |      |      |      |     |      | CodeForces |      |      |      |
|-------------|--------------|------|------|------|------|------|-----|------|------------|------|------|------|
|             | 1            | 2    | 4    | 8    | 16   | 32   | 1   | 2    | 4          | 8    | 16   | 32   |
| Base        | 4.5          | 7.5  | 11.3 | 15.7 | 20.6 | 25.8 | 5.5 | 8.5  | 12.5       | 17.2 | 22.4 | 27.7 |
| ReST        | 9.4          | 13.1 | 17.0 | 21.3 | 25.9 | 30.4 | 9.7 | 14.2 | 19.3       | 24.8 | 30.5 | 35.9 |
| Guided-ReST | 10.5         | 14.8 | 19.4 | 24.1 | 28.9 | 33.9 | 9.7 | 14.5 | 20.2       | 26.2 | 32.0 | 37.6 |

Our method generalizes well beyond Countdown.

#### Conclusion

- Our method significantly improves the search efficiency of language models by leveraging optimal solutions as guidance.
- Extending the approach to broader tasks would be a promising future direction.

Code: https://github.com/snu-mllab/guided-rest