AliO: Output Alignment Matters in Long-Term Time Series Forecasting

Kwangryeol Park, Jaeho Kim, Seulki Lee

The Problem: Models are Accurate, but Not Reliable

Motivation

 Long-term Time Series Forecasting is crucial for real-world planning, like budgeting for electricity demand or weather forecasting.

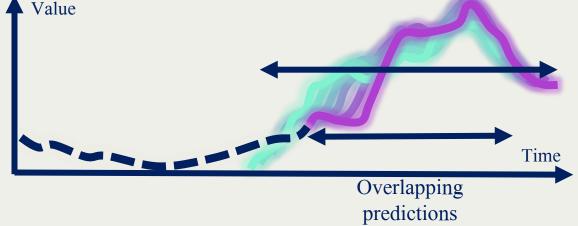
The Output Alignment Problem

• The phenomenon where, during rolling forecasting, state-of-the-art models produce inconsistent predictions for the overlapping future timestamp.

The Problem: Models are Accurate, but Not Reliable

Why This Matters (Societal Impact)

- User Distrust
 - Fluctuating forecasts make users lose trust in the system.
- Economic Waste
 - Inconsistent predictions (e.g., for energy demand) force costly rescheduling and budget reallocation, wasting time and resources.



Our Solution: The TAM Metric & AliO Loss

A New Metric: TAM (Time Alignment Metric)

- Motivation
 - We can't fix what we can't measure.
 - Existing metrics like MSE only measure accuracy (prediction vs. ground truth), not consistency (prediction vs. prediction).
- What it is
 - We propose the TAM (Time Alignment Metric), the first metric to quantify output alignment by measuring the average discrepancy between overlapping

predictions.

Our Solution: The TAM Metric & AliO Loss

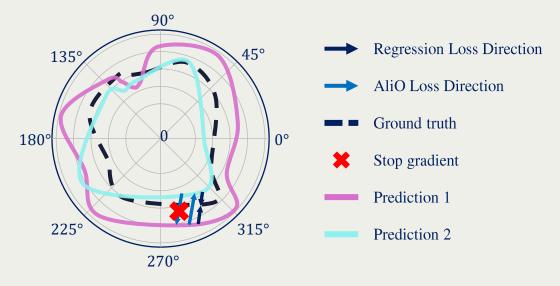
A New Method: AliO (Align Outputs)

- Objective
 - To simultaneously improve output alignment (low TAM) and maintain or enhance forecasting accuracy (low MSE).
- How it Works
 - AliO is a novel loss function that minimizes the discrepancy between lagged predictions in both the time and frequency domains.
- Model-Agnostic
 - AliO is not a new model. It's a loss function that can be seamlessly added to any existing LTSF model (like PatchTST, DLinear, etc.) without modifying its architecture.


How AliO Works: Regression Pulling (RegPull)

- The problem
 - Simply minimizing `L2(Prediction 1, Prediction 2)` could hurt accuracy by pulling both predictions away from the Ground Truth.
- Regression Pulling (RegPull)
 - At each overlapping timestamp, identify which prediction point is closer to the Ground Truth.
 - Apply a `stop-gradient` operation to that closer point.
 - The loss now pulls the further point towards the closer point.
- The Effect
 - This ensures the alignment loss (AliO Loss) only moves predictions in a direction that also reduces the regression loss (MSE).
- Result
 - We improve consistency (up to 58.2%) and reinforce accuracy (up to 27.5%)

Dual-domain AliO


Time-domain AliO

 Red X is stop-gradient preventing the wrong direction.

Frequency-domain AliO

 Red X is stop-gradient preventing the wrong direction.

Radius: amplitude

Angle: phase

AliO Improves Both Alignment & Accuracy

Quantitative Result

- Consistency (TAM): Achieved up to 58.2% improvement.
- Accuracy (MSE): Simultaneously **maintained or enhanced** forecasting performance by up to **27.5**%.

Qualitative Result

Models trained with AliO produce stable and consistent forecasts.

Conclusion: Alignment is a New Pillar of LTSF

We...

- Identified the `Output Alignment Problem,` a key source of unreliability.
- Proposed TAM, the first metric to quantify this consistency.
- Developed AliO, a model-agnostic loss that fixes the problem, improving both reliability and accuracy.

Future Impact

- This work pioneers `Data-Model Robustness through time` making models robust to overlapping timestamps.
- We argue that the field must treat consistency (TAM) as critical as accuracy (MSE) for building trustworthy, real-world forecasting systems (i.e., rolling forecasting).

Thank you