
Belief-Calibrated Multi-Agent Consensus Seeking for Complex NLP Tasks

Wentao Deng¹, Jiahuan Pei², Zhiwei Xu¹, Zhaochun Ren³, Zhumin Chen^{1*}, Pengjie Ren^{1*}

¹ Shandong University, ² Vrije Universiteit Amsterdam, ³ Leiden University * Corresponding authors

Motivation

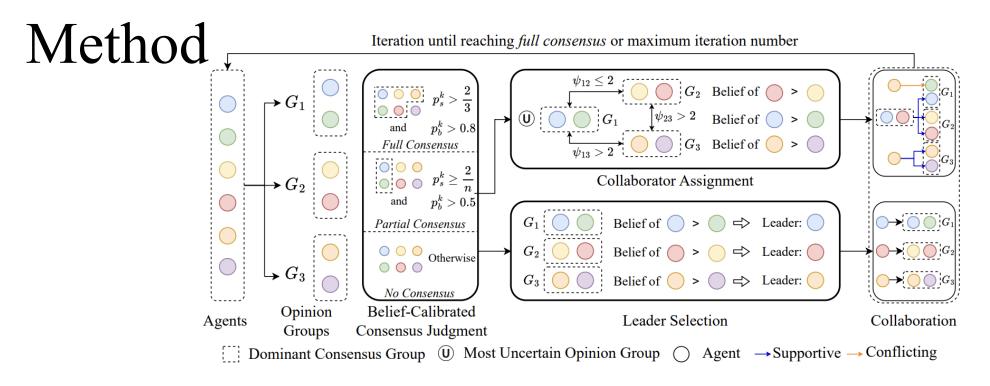
Existing consensus-seeking approaches typically assess consensus by measuring the degree of agreement among agents, and agents update their views by aggregating the opinions received from others.

Challenges:

- Current methods often overlook the underlying beliefs of individual agents when determining consensus, which may result in latent internal inconsistencies and compromise the overall stability of the consensus.
- Agents generally lack mechanisms to selectively identify optimal collaborators, instead indiscriminately incorporating all received opinions.

Contributions

- We propose the Belief-Calibrated Consensus Seeking (BCCS) method to enhance the consensus-seeking process in multi-agent system (MAS).
- Theoretical guarantees are established for achieving stable consensus in two key scenarios: (i) cooperation involving both supportive and conflicting agents, and (ii) coordination among leaders with divergent beliefs. These theorems form the theoretical backbone of BCCS.
- Extensive experiments conducted on widely adopted benchmarks confirm the effectiveness of BCCS.


Theoretical Analysis

The collaboration between agents satisfies the following properties:

- The MAS tends to reach the stable consensus when each agent in MAS collaborates with supportive agents.
- The MAS tends to form the unstable consensus when any agent in MAS collaborates with conflicting agents.

The collaboration between followers and their respective leaders satisfies the following properties:

- The MAS tends to reach the stable consensus when each agent in an opinion group collaborates with its leaders.
- The leaders with higher beliefs can expedite the convergence to the stable consensus.

- Consensus judgement module not only considers the agents' outputs but also calibrates them based on the associated belief levels. It categorizes the system into one of three consensus states: full consensus, partial consensus, or no consensus.
- Collaborator assignment module automatically assigns optimal collaborators to agents, thereby fostering convergence and avoiding suboptimal solutions.
- Leader selection module identifies and appoints leaders for each opinion group, guiding the direction of discourse and alleviating conflicts.

Main results

Table 1: Main results on the MATH dataset. Bold numbers indicate the best-performing results among all methods.

Method	Algebra	Counting & Probability	Geometry	Intermediate Algebra	Number Theory	Prealgebra	Precalculus	#Avg
CoT	91.64±0.56	74.30±4.55	58.98±5.46	52.61±2.91	71.33±4.34	85.53±1.71	57.59±3.94	73.33±1.07
Reflection	91.83±1.88	76.98±1.98	61.55±3.85	52.58±2.33	72.57±0.29	87.65±1.26	59.89±5.73	74.67±0.81
CoT-SC	92.15±1.12	73.91±0.60	61.76±7.00	62.87±0.73	74.93±4.30	85.52±1.70	63.93±5.58	76.67±0.18
EoT	94.85±1.27	77.87±4.31	63.03±6.43	60.75±1.21	80.74±1.78	89.42±0.91	61.38±6.81	78.40±0.31
GroupDebate	94.07±1.35	78.37±2.73	67.70±6.51	59.98±1.62	75.33±3.81	89.08±0.94	61.89±5.35	77.93±0.84
MAD	94.05±0.39	78.37±1.76	66.14±7.16	62.09±1.99	79.57±1.36	90.15±0.81	62.01±3.68	78.87±0.18
PARSE	94.84±0.83	76.88±1.04	68.31±5.51	61.13±3.00	80.85±0.29	88.76±0.93	59.14±3.76	78.53±0.55
CMD	95.11±0.92	75.59±2.94	67.81±7.22	61.17±1.75	81.65±2.37	90.16±0.39	61.21±4.25	78.93±0.53
DyLAN	95.15±0.81	76.29±2.95	67.08±7.90	59.94±2.03	80.74±1.78	90.09±1.71	62.70±5.19	78.80±0.31
BCCS	95.41 ±0.76	79.07 ±1.12	68.64 ±7.39	64.28 ±1.60	82.81 ±1.74	90.88 ±0.14	64.93 ±5.17	80.60 ±0.23

Table 2: Main results on the MMLU dataset.

Method	STEM	Social Sciences	Humanities	Other	#Avg
СоТ	68.70±1.24	78.19±0.82	71.84±1.25	70.50±2.95	71.87±0.96
Reflection	70.93±1.94	78.81±1.56	72.99±1.52	70.79±1.84	73.07±1.67
CoT-SC	72.76±0.73	78.82±1.12	71.84±2.24	69.61±3.00	73.13±1.33
ЕоТ	75.81±0.54	76.01±1.89	73.56±2.07	71.39±2.95	74.33±1.48
GroupDebate	77.03±0.81	78.50±1.08	71.26±2.74	71.98±2.81	74.87±1.54
MAD	78.46±1.66	78.50±1.62	73.85±2.01	72.86±1.80	76.13±1.46
PARSE	78.05±1.27	79.44±1.43	74.14±1.99	73.74±1.56	76.47±0.48
CMD	76.63±1.02	78.82±1.12	72.41±2.28	71.98±2.36	75.07±1.44
DyLAN	78.25±0.89	77.26±2.43	74.21±2.23	69.03±1.84	75.00±1.51
BCCS	79.47 ±0.81	80.69 ±1.65	78.16 ±3.20	75.22 ±2.66	78.47 ±1.22

- The experiments are conducted on two NLP benchmark datasets, including MATH and MMLU.
- ➤ BCCS outperforms the baselines consistently in both datasets.

Conclusion

- ➤ In this paper, we provide a theoretical framework for selecting optimal collaborators that maximum consensus stability.
- ➤ Based on the theorems, we propose the BCCS framework to facilitate stable consensus via selecting optimal collaborators and calibrating the consensus judgment by system-internal beliefs.

Thanks for Your Attention!