Formal Models of Active Learning from Contrastive Examples

Farnam Mansouri¹

Hans U. Simon²

Adish Singla³

Yuxin Chen⁴

Sandra Zilles⁵

¹University of Waterloo

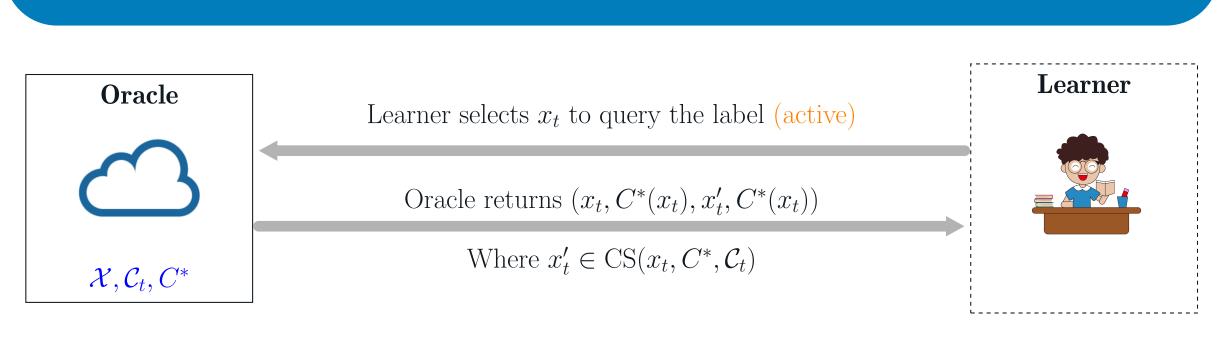
²Ruhr-University Bochum

³Max Planck Institute for Software Systems

⁴University of Chicago

⁵University of Regina

Setup



Goal of learning

- Identification: $S_{CS}(C)$ is the minimum number of queries needed for finding any target labeling rule $C^* \in C$.
- ε -approximation: $\mathcal{S}_{CS}(\mathcal{C}, \varepsilon)$ is the minimum number of queries needed for finding a C with symmetric difference less than ε (according to uniform distribution over \mathcal{X}) to any $C^* \in \mathcal{C}$.

Contrast Set Mapping

- Minimum Distance Model CS_{\min}^d : Given instance x, provides closest point to x with opposite label.
- **Proximity Model** CS_{prox}^d : Given instance x and distance r > 0, returns any x' with opposite label to x such that d(x, x') < r, and ω if no such x' exists.

toy example: learn the concept "Bass Guitar"

Sample Complexity of Some Classes

Table 1: Complexity of ε -approximation with ℓ_1 -metric

				-
	without CS	$\mathrm{CS}^d_{\mathrm{pro}}$)X	CS_{\min}^d (even for exact identification)
(a) thresholds	$\Theta(\log \frac{1}{\varepsilon})$	$\Theta(\log$	$\frac{1}{\varepsilon}$)	1
(b) rectangles	$\Theta(k\log(\frac{1}{\varepsilon}))$	$\Omega(\log(\frac{1}{\varepsilon})), C$	$O(\log(\frac{k}{\varepsilon}))$	2

Table 2: Complexity of identification with Hamming distance

	without CS	$\mathrm{CS}^d_\mathrm{prox}$	$ ext{CS}_{\min}^d$
(a) Monotonic Monomials	m	$\Theta(\log m)$	1
(b) Monomials	m	$\Theta(\log(m))$	2
(c) Clauses	m	$\Theta(\log(m))$	2
(d) Parity functions	m	[m-1,m]	[m-1,m]

Monotonic monomials, monomials, clauses and parity are functions over Boolean variables $\{v_1, \ldots, v_m\}$ of the form respectively (a) $v_{i_1} \wedge \ldots \wedge v_{i_k}$; (b) $\ell_{i_1} \wedge \ldots \wedge \ell_{i_k}$; (c) $\ell_{i_1} \vee \ldots \vee \ell_{i_k}$; and (d) $v_{i_1} \oplus \ldots \oplus v_{i_k}$ for some pairwise distinct i_1, \ldots, i_k , where $\ell_i \in \{v_i, \bar{v}_i\}$.

Relationship with Self Directed Learning Complexity

Definition 1 ([GS94]) (informal) Let C be a concept class over a finite domain X, n = |X|. Assume an unknown $C^* \in C$. In each of n rounds, a self-directed learner selects a new instance $x \in C$, predicts a label b, and receives $C^*(x)$ as feedback. A mistake occurs when $C^*(x) \neq b$. The self-directed learning complexity of C, denoted by SD(C), is the minimum number m such that every self-directed learner makes at least m mistakes for some $C^* \in C$.

Theorem 1 If C is defined over a finite X, and $d: X \times X \to \mathbb{R}^{\geq 0}$, then $S_{\text{CS}_{\min}^d}(C) \geq \lceil \text{SD}(C)/2 \rceil$.

Proof sketch:

- We can construct a self-directed learner from a minimum-distance learner L.
- Whenever L poses a query x, execute the following subroutine: (i) choose x and predict 0; (ii) choose x' with minimal d(x, x') and predict the label $C^*(x)$ until a mistake occurs.
- The total number of subroutines is bounded by $2\mathcal{S}_{\mathrm{CS}_{\min}^d}(\mathcal{C})$.
- In fact, the theorem still holds even if d_t changes each time t.

Lower Bounds

Example 1 Let C be a class of functions over variables $\{v_1, \ldots, v_m\}$ and d be the Hamming distance. Denote, $C' = \{C \oplus v_{m+1} \mid C \in C\}$. Then

$$\mathcal{S}[MQ](\mathcal{C}') = \mathcal{S}_{CS_{min}^d}(\mathcal{C}') = \mathcal{S}_{CS_{prov}^d}(\mathcal{C}') = \mathcal{S}[MQ](\mathcal{C}).$$

Definition 2 Define the class of 1-decision lists DL_m over the Boolean variables $\{v_1, \ldots, v_m\}$ such that

• Each function $f_{\mathcal{L}} \in DL_m$ is represented by a list of shape

$$\mathcal{L} = [(\ell_1, b_1), \dots, (\ell_z, b_z), b_{z+1}],$$

where $z \geq 0$, $\ell_i \in \{v_1, \bar{v}_1, \dots, v_m, \bar{v}_m\}$ and $b_i \in \{0, 1\}$ (each variable occurs at most once).

• For a point $\mathbf{a} \in \{0,1\}^m$, let $i^* \in [z]$ be minimal number such that ℓ_i applied to \mathbf{a} is 1. If such i^* exists define $f_{\mathcal{L}}(\mathbf{a}) = b_{i^*}$, otherwise define $f_{\mathcal{L}}(\mathbf{a}) = b_{z+1}$.

Let DL_m^k be the subclass of DL_m which contains all decision lists with at most k label alternations.

Theorem 2 Let d be the Hamming distance. Then, $SD(DL_m^k) \le km$, while $\mathcal{S}_{CS_{min}^d}[DL_m^2] \ge 2^{m-2} - 1$.

Definition 3 An s-term z-MDNF of size m is a function $f : \{0,1\}^m \to \{0,1\}$ of the form $f(v_1, v_2, \dots, v_m) = M_1 \vee M_2 \vee \dots \vee M_s$, where each M_i is a monotone monomial with at most z literals. We use $\mathcal{C}_{\text{MDNF}}^{m,s,z}$ to refer to the class of all s-term z-MDNF of size m.

Theorem 3 (largely due to [GS94; ABM14]) Let d be the Hamming distance. Then $SD(\mathcal{C}_{MDNF}^{m,s,z}) = s$, while $\mathcal{S}_{CS_{\min}^d}(\mathcal{C}_{MDNF}^{m,s,z}) \geq \mathcal{S}[MQ](\mathcal{C}_{MDNF}^{m-2,s-1,z-1})$ which is at least

$$(z-1)(s-1)\log(m-2) + \alpha,$$
 where $\alpha = \left(\frac{z-1}{s-1}\right)^{s-2}$ if $z > s$, and $\alpha = \left(\frac{2s-2}{z-1}\right)^{(z-1)/2}$ if $z \le s$.

An Upper Bound for a Dynamic Metric

Theorem 4 For any for any concept class C' define $d_{C'}(x, x') := |\{C \in C' : C(x) \neq C(x')\}|/|C'|$. Then $\mathcal{S}_{CS_{\min}^{(d_{C_t})}}(C_{\text{MDNF}}^{m,s,z}) \leq s = \text{SD}(C_{\text{MDNF}}^{m,s,z})$, where C_t is the given version space at time t.

Proof idea:

- Let $C^* = M_1 \vee \cdots \vee M_s$. Suppose the learner queries $\mathbf{0}$ exactly s times. For each round $t \in [s]$, the corresponding contrastive example will be associated with some M_{i_t} .
- After the t-th query, the version space will contain only concepts that contain M_{i_t} . This ensures that i_1, \ldots, i_s are pairwise distinct. Consequently, the only concept remaining in the version space at time s will be C^* .

Discussion

- Our bounds for self-directed learning ensure that the complexity of the minimum-distance and proximity models always lies between the complexity of self-directed learning and the sample complexity of membership queries.
- Our framework considers learners and oracles with perfect knowledge. An application in formal methods: the contrast oracle can be viewed as a computer program simulated by the learner to refute a hypothesis.
- Future directions: extension to setups with imperfect knowledge or agnostic learning.

References

[GS94] Sally A. Goldman and Robert H. Sloan. "The Power of Self-Directed Learning". In: *Mach. Learn.* 14.1 (1994), pp. 271–294.

[ABM14] Hasan Abasi, Nader H. Bshouty, and Hanna Mazzawi. "On exact learning monotone DNF from membership queries". In: *Proceedings of the 25th International Conference on Algorithmic Learning Theory (ALT)*. 2014, pp. 111–124.