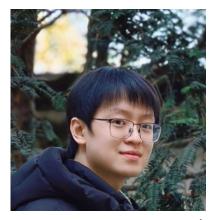
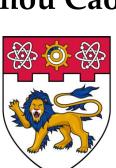
Convex Smooth Losses with Linear Surrogate Regret



Yuzhou Cao¹



Han Bao ²

Lei Feng³

Bo An 1,4

¹Nanyang Technological University ²the Institute of Statistical Mathematics ³Southeast University

Evaluation stage: Performance measuring with **discrete** loss function ℓ *w.r.t.* **discrete (finite)** prediction space \hat{y} ($|\hat{y}| < +\infty$)

$$\min_{h:\,\mathcal{X} o\,\widehat{\mathcal{Y}}}\,R_\ell(h^{\,}) = \mathbb{E}_{X,Y}[\ell(h(X),Y)^{\,}]$$

Evaluation stage: Performance measuring with **discrete** loss function ℓ *w.r.t.*

discrete (finite) prediction space \widehat{y} $(|\widehat{y}| < +\infty)$

$$\min_{h:\,\mathcal{X} o\,\widehat{\mathcal{Y}}}R_\ell(h)=\mathbb{E}_{X,Y}[\ell(h(X),Y)]$$

Hard to optimize

Evaluation stage: Performance measuring with **discrete** loss function ℓ *w.r.t.*

discrete (finite) prediction space \widehat{y} $(|\widehat{y}| < +\infty)$

$$\min_{h:\,\mathcal{X} o\,\widehat{\mathcal{Y}}}R_\ell(h)=\mathbb{E}_{X,Y}[\ell(h(X),Y)]$$
 Hard to optimize

Learning stage: Minimization of (expected) **continuous** loss function ϕ *w.r.t.* **continuous** prediction space \mathbb{R}^d .

$$\min_{f:\,\mathcal{X} o\,\mathbb{R}^d} R_\phi(f) = \mathbb{E}_{X,Y}[\phi(f(X),Y)]$$
 Continuous Surrogate

Evaluation stage: Performance measuring with **discrete** loss function ℓ *w.r.t.*

discrete (finite) prediction space \widehat{y} $(|\widehat{y}| < +\infty)$

$$\min_{h:\,\mathcal{X} o\,\widehat{\mathcal{Y}}}\,R_\ell(h\,)=\mathbb{E}_{X,Y}ig(\ell(h(X),Y)ig)$$
 Hard to optimize

Learning stage: Minimization of (expected) **continuous** loss function ϕ *w.r.t.* **continuous** prediction space \mathbb{R}^d .

$$\min_{f:\,\mathcal{X} o\,\mathbb{R}^d} R_\phi(f) = \mathbb{E}_{X,Y}[\phi(f(X),Y)]$$
 Continuous Surrogate

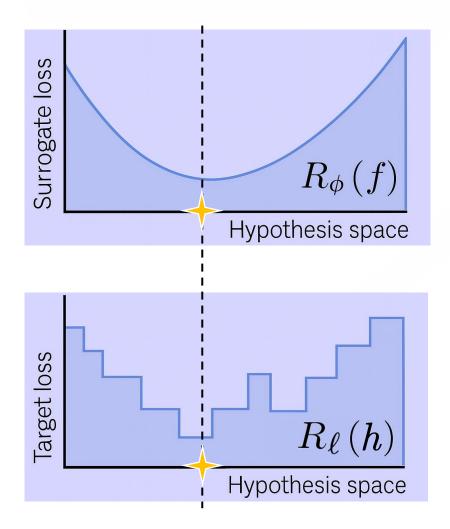
$$arphi\colon \mathbb{R}^d o \widehat{\mathcal{Y}}:$$
 prediction link. $h_{arphi}:$

$$h_{\varphi} := \varphi \circ f$$
: final predictive model.

• Q1: Are surrogate and target losses minimized simultaneously? **Calibration/Fisher Consistency**

$$R_{\phi}(f) - \min_{f} R_{\phi}(f) \to 0 \Rightarrow R_{\ell}(\varphi \circ f) - \min_{h} R_{\ell}(h) \to 0$$

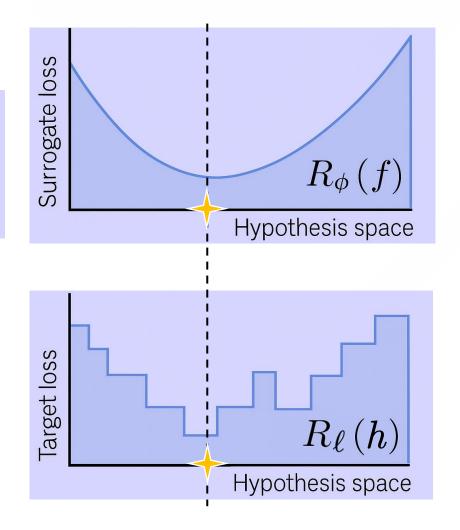
$$(Surrogate) \operatorname{Regret}_{\phi}(f) \qquad (\operatorname{Target}) \operatorname{Regret}_{\ell}(\varphi \circ f)$$



• Q1: Are surrogate and target losses minimized simultaneously? **Calibration/Fisher Consistency**

$$R_{\phi}(f) - \min_{f} R_{\phi}(f) o 0 \Rightarrow R_{\ell}(\varphi \circ f) - \min_{h} R_{\ell}(h) o 0$$
 $\operatorname{Regret}_{\phi}(f)$
 $\operatorname{Regret}_{\ell}(\varphi \circ f)$

$$\operatorname{Regret}_{\ell}(\varphi \circ f) \leq \psi(\operatorname{Regret}_{\phi}(f))$$



- Q2: How the convergence of $\operatorname{Regret}_{\phi}(f)$ transfers to $\operatorname{Regret}_{\ell}(\varphi \circ f)$? $\operatorname{Regret}_{\ell}(\varphi \circ f) \leq \psi(\operatorname{Regret}_{\phi}(f))$
- Two typical bounds:
 - Square root:

Deteriorates target regret convergence rate!

$$\psi(*) = C \cdot \sqrt{*} o \operatorname{Regret}_{\ell}(\varphi \circ f) = \mathcal{O}_{p}(1/n^{p/2})$$

• Linear:

Maintains fast target regret convergence rate!

$$\psi(*) = C \cdot * o \operatorname{Regret}_{\ell}(\varphi \circ f) = {\mathcal O}_{p}(1/n^{p})$$

• Q2: How the convergence of $\operatorname{Regret}_{\phi}(f)$ transfers to $\operatorname{Regret}_{\ell}(\varphi \circ f)$? $\operatorname{Regret}_{\ell}(\varphi \circ f) \leq \psi(\operatorname{Regret}_{\phi}(f))$ Linear ψ is desirable!

• Q3: Good Optimization Properties? Convexity, Smoothness...

A Negative Result

[FW21, Theorem 2] For surrogate-target loss pair (ϕ, ℓ) that is calibrated with surrogate regret bound ψ , if ϕ is **locally strongly convex and locally smooth**, the surrogate regret bound is **at least square-root**, e.g., there exists ϵ_0 , C > 0 that:

$$\psi(\epsilon) \ge C\sqrt{\epsilon}, \ \forall \epsilon \le \epsilon_0$$

Includes most existing convex smooth losses:

Cross-entropy/Focal/MSE/Binary Cross-Entropy/Dice/Jaccard Index.....

A popular conjecture: convexity, smoothness, and linear surrogate regret bound are incompatible.

A Negative Result

A popular conjecture: convexity, smoothness, and linear surrogate regret bound are incompatible.

This conjecture is overturned by Convolutional Fenchel-Young Loss!

- Works for any discrete target loss.
- Achieves a linear surrogate regret bound.
- Smooth and convex.
- Produces consistent probability estimators.

Target Loss Decomposition

- Recap: Target loss ℓ : $\widehat{\mathcal{Y}}_{\text{(Prediction space)}} \times \mathcal{Y}_{\text{(Label space)}} \to \mathbb{R}_{\geq 0}, \ |\widehat{\mathcal{Y}}| = N, \ |\mathcal{Y}| = K.$
- New concept:

$$\rho - \ell^{\rho}$$
 Decomposition: $\ell(t,y) = \langle \rho(y), \ell^{\rho}(t) \rangle + c(y)$

- Label encoding: $\rho(y): \mathcal{Y} \to \mathbb{R}^d$
- Loss encoding: $\ell^{\rho}(t): \widehat{\mathcal{Y}} \to \mathbb{R}^d$
- Scalar offset: $c(y): \mathcal{Y} \to \mathbb{R}$

An (always holds) example:

$$oldsymbol{
ho}(y) = oldsymbol{e}_y \in \mathbb{R}^K, \; oldsymbol{\ell}^{oldsymbol{
ho}}(t) = [\ell(t,1),\, \cdots, \ell(t,K)]^ op, \; c = 0.$$

Fenchel-Young Loss

• **Recap:** label encoding $\rho(y): \mathcal{Y} \to \mathbb{R}^d$

Let $\Omega: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ be a **negentropy** (convex function) with $\operatorname{conv}\{\boldsymbol{\rho}(y)\}_{y=1}^K \subseteq \operatorname{dom}(\Omega)$ A **Fenchel-Young loss** [BMN20] ϕ_{Ω} : $\operatorname{dom}(\Omega^*) \times \mathcal{Y} \to \mathbb{R}_{\geq 0}$ generated by Ω is defined as:

$$\phi_{\Omega}(\boldsymbol{\theta}, y) = \Omega(\boldsymbol{\rho}(y)) + \Omega^{*}(\boldsymbol{\theta}) - \langle \boldsymbol{\theta}, \boldsymbol{\rho}(y) \rangle$$

 $\Omega^*(oldsymbol{ heta}) = \sup_{oldsymbol{
ho} \in \mathbb{R}^d} \langle oldsymbol{ heta}, oldsymbol{
ho}
angle - \Omega(oldsymbol{p}) ext{ is Fenchel conjugate.}$

• Quantifies discrepancy between label $\rho(y)$ and score θ via **Fenchel-Young Inequality**.

$$\Omega(\boldsymbol{
ho}(y)) + \Omega^*(\boldsymbol{\theta}) \ge \langle \boldsymbol{\theta}, \boldsymbol{
ho}(y) \rangle$$

Always convex, and smooth with strongly convex negentropy.

Linear Surrogate Regret Bound?

• Duality between strong convexity and smoothness[KST09]:

 ϕ_{Ω} is strongly convex if Ω is smooth.

[FW21, Theorem 2] For surrogate-target loss pair (ϕ, ℓ) that is calibrated with surrogate regret bound ψ , if ϕ is **locally strongly convex and locally smooth**, the surrogate regret bound is **at least square-root**, e.g., there exists ϵ_0 , C > 0 that:

$$\psi(\epsilon) \ge C\sqrt{\epsilon}, \ \forall \epsilon \le \epsilon_0$$

Smooth negentropy should be avoided!

Ordinary Negentropy $\Omega(p)$: commonly strongly convex & smooth (Square/Shannon)

Ordinary Negentropy $\Omega(p)$: commonly strongly convex & smooth (Square/Shannon)

New Concept-Task Entropy: $T(\mathbf{p}) := -\min_{t \in \widehat{\mathcal{Y}}} \langle \mathbf{p}, \boldsymbol{\ell}^{\boldsymbol{\rho}}(t) \rangle$

- Recap:
 - $\ell(t,y) = \langle \boldsymbol{\rho}(y), \boldsymbol{\ell}^{\boldsymbol{\rho}}(t) \rangle + c(y)$
 - $T(\mathbf{p})$: a shifted negative minimum pointwise target risk.

Non-smooth but not strongly convex!

Ordinary Negentropy $\Omega(p)$: commonly strongly convex & smooth (Square/Shannon)

Task Entropy:
$$T(\mathbf{p}) := -\min_{t \in \widehat{\mathcal{Y}}} \langle \mathbf{p}, \boldsymbol{\ell}^{\boldsymbol{\rho}}(t) \rangle$$

Convolutional Entropy: $\Omega_T(\mathbf{p}) := (\Omega + T)(\mathbf{p})$ strongly convex and non-smooth!

Ordinary Negentropy $\Omega(p)$: commonly strongly convex & smooth (Square/Shannon)

Task Entropy:
$$T(\mathbf{p}) := -\min_{t \in \widehat{\mathcal{Y}}} \langle \mathbf{p}, \boldsymbol{\ell}^{\boldsymbol{\rho}}(t) \rangle$$

Convolutional Entropy: $\Omega_T(\mathbf{p}) := (\Omega + T)(\mathbf{p})$ strongly convex and non-smooth!

Why "Convolutional"?

$$\Omega_T^*(\boldsymbol{\theta}) = (\Omega^* \square T^*) (\boldsymbol{\theta}) = \inf_{\boldsymbol{u}} \{\Omega^*(\boldsymbol{\theta} - \boldsymbol{u}) + T^*(\boldsymbol{u})\}$$
Infimal Convolution!

Ordinary Negentropy $\Omega(p)$: commonly strongly convex & smooth (Square/Shannon)

Task Entropy:
$$T(\mathbf{p}) := -\min_{t \in \widehat{\mathcal{Y}}} \langle \mathbf{p}, \boldsymbol{\ell}^{\boldsymbol{\rho}}(t) \rangle$$

Convolutional Entropy: $\Omega_T(\mathbf{p}) := (\Omega + T)(\mathbf{p})$ strongly convex and non-smooth!

$$egin{aligned} \Omega_T^*(oldsymbol{ heta}) = & \left(\Omega^*(oldsymbol{ heta} - oldsymbol{u}) + T^*(oldsymbol{u})
ight.\} = & \inf_{oldsymbol{\pi} \in \Delta^N} & \Omega^*(oldsymbol{ heta} + \mathcal{L}^{oldsymbol{
ho}} oldsymbol{\pi}) \ & \mathcal{L}^{oldsymbol{
ho}} := & [oldsymbol{\ell}^{oldsymbol{
ho}}(1), \cdots, oldsymbol{\ell}^{oldsymbol{
ho}}(N)]^{ op} \end{aligned}$$

Ordinary Negentropy $\Omega(p)$: commonly strongly convex & smooth (Square/Shannon)

Task Entropy:
$$T(\mathbf{p}) := -\min_{t \in \widehat{\mathcal{Y}}} \langle \mathbf{p}, \boldsymbol{\ell}^{\boldsymbol{\rho}}(t) \rangle$$

Convolutional Entropy: $\Omega_T(\mathbf{p}) := (\Omega + T)(\mathbf{p})$ strongly convex and non-smooth!

Conjugated Convolutional Entropy: $\Omega_T^*(\boldsymbol{\theta}) = \inf_{\boldsymbol{\pi} \in \Delta^N} \Omega^*(\boldsymbol{\theta} + \mathcal{L}^{\boldsymbol{\rho}} \boldsymbol{\pi})$

For strongly convex $\Omega: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ with $\operatorname{conv}\{\boldsymbol{\rho}(y)\}_{y=1}^K \subseteq \operatorname{dom}(\Omega)$ and $\operatorname{dom}(\Omega^*) = \mathbb{R}^d$, a **Convolutional Fenchel-Young loss** $\phi_{\Omega_T}: \operatorname{dom}(\Omega_T^*) \times \mathcal{Y} \to \mathbb{R}_{\geq 0}$ generated by Ω_T is:

$$\phi_{\Omega_{T}}(oldsymbol{ heta},y) = \Omega_{T}(oldsymbol{
ho}(y)) + \inf_{oldsymbol{\pi} \in \Delta^{N}} \Omega^{*}(oldsymbol{ heta} + \mathcal{L}^{oldsymbol{
ho}}oldsymbol{\pi}) - \langle oldsymbol{ heta}, oldsymbol{
ho}(y)
angle$$

For strongly convex $\Omega: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ with $\operatorname{conv}\{\boldsymbol{\rho}(y)\}_{y=1}^K \subseteq \operatorname{dom}(\Omega)$ and $\operatorname{dom}(\Omega^*) = \mathbb{R}^d$, a **Convolutional Fenchel-Young loss** $\phi_{\Omega_T}: \operatorname{dom}(\Omega_T^*) \times \mathcal{Y} \to \mathbb{R}_{\geq 0}$ generated by Ω_T is:

$$\phi_{\Omega_{T}}(oldsymbol{ heta},y) = \Omega_{T}(oldsymbol{
ho}(y)) + \inf_{oldsymbol{\pi} \in \Delta^{N}} \Omega^{*}(oldsymbol{ heta} + \mathcal{L}^{oldsymbol{
ho}}oldsymbol{\pi}) - \langle oldsymbol{ heta}, oldsymbol{
ho}(y)
angle$$

Attainable and efficiently solvable (Lemma 8)

For strongly convex $\Omega: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ with $\operatorname{conv}\{\boldsymbol{\rho}(y)\}_{y=1}^K \subseteq \operatorname{dom}(\Omega)$ and $\operatorname{dom}(\Omega^*) = \mathbb{R}^d$, a **Convolutional Fenchel-Young loss** $\phi_{\Omega_T}: \operatorname{dom}(\Omega_T^*) \times \mathcal{Y} \to \mathbb{R}_{\geq 0}$ generated by Ω_T is:

$$\phi_{\Omega_T}(oldsymbol{ heta},y) = \Omega_T(oldsymbol{
ho}(y)) + \min_{oldsymbol{\pi} \in \Delta^N} \Omega^*(oldsymbol{ heta} + \mathcal{L}^{oldsymbol{
ho}}oldsymbol{\pi}) - \langle oldsymbol{ heta}, oldsymbol{
ho}(y)
angle$$

For strongly convex $\Omega: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ with $\operatorname{conv}\{\boldsymbol{\rho}(y)\}_{y=1}^K \subseteq \operatorname{dom}(\Omega)$ and $\operatorname{dom}(\Omega^*) = \mathbb{R}^d$, a **Convolutional Fenchel-Young loss** $\phi_{\Omega_T}: \operatorname{dom}(\Omega_T^*) \times \mathcal{Y} \to \mathbb{R}_{\geq 0}$ generated by Ω_T is:

$$\phi_{\Omega_{T}}(oldsymbol{ heta},y) = \Omega_{T}(oldsymbol{
ho}(y)) + \min_{oldsymbol{\pi} \in \Delta^{N}} \Omega^{*}(oldsymbol{ heta} + \mathcal{L}^{oldsymbol{
ho}}oldsymbol{\pi}) - \langle oldsymbol{ heta}, oldsymbol{
ho}(y)
angle$$

- (Full domain) dom $(\phi_{\Omega_T}) = \mathbb{R}^d$.
- (Smoothness and convexity) ϕ_{Ω_T} is convex and smooth.
- (Envelope theorem)

$$abla_{m{ heta}} \min_{m{\pi} \in \Delta^{^{N}}} \Omega^{*}(m{ heta} + \mathcal{L}^{m{
ho}}m{\pi}) =
abla \Omega^{*}(m{ heta} + \mathcal{L}^{m{
ho}}m{\pi}^{*}), \ orall m{\pi}^{*} \in \Pi(m{ heta}) \coloneqq \operatorname*{argmin}_{m{\pi} \in \Delta^{^{N}}} \Omega^{*}(m{ heta} + \mathcal{L}^{m{
ho}}m{\pi}^{*})$$

For strongly convex $\Omega: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ with $\operatorname{conv}\{\boldsymbol{\rho}(y)\}_{y=1}^K \subseteq \operatorname{dom}(\Omega)$ and $\operatorname{dom}(\Omega^*) = \mathbb{R}^d$, a **Convolutional Fenchel-Young loss** $\phi_{\Omega_T}: \operatorname{dom}(\Omega_T^*) \times \mathcal{Y} \to \mathbb{R}_{\geq 0}$ generated by Ω_T is:

$$\phi_{\Omega_{T}}(oldsymbol{ heta},y) = \Omega_{T}(oldsymbol{
ho}(y)) + \min_{oldsymbol{\pi} \in \Delta^{N}} \Omega^{*}(oldsymbol{ heta} + \mathcal{L}^{oldsymbol{
ho}}oldsymbol{\pi}) - \langle oldsymbol{ heta}, oldsymbol{
ho}(y)
angle$$

• Probability estimator: For any $\eta \in \operatorname{relint}(\Delta^K)$, the pointwise surrogate risk $R_{\phi_{\Omega_r}}(\theta, \eta) := \mathbb{E}_{Y \sim \eta}[\phi_{\Omega_r}(\theta, Y)]$ is minimized at θ^* :

$$\mathbb{E}_{Y \sim \boldsymbol{\eta}}[\boldsymbol{\rho}(Y)] = \nabla \Omega^* (\boldsymbol{\theta}^* + \mathcal{L}^{\boldsymbol{\rho}} \boldsymbol{\pi}^*), \ \forall \, \boldsymbol{\pi}^* \in \Pi(\boldsymbol{\theta}^*)$$

(e.g.,
$$\mathbb{E}_{Y \sim \eta}[\boldsymbol{\rho}(Y)] = \boldsymbol{\eta}$$
 when $\boldsymbol{\rho}(y) = \boldsymbol{e}_y \in \mathbb{R}^K$)

• Recap: Surrogate regret: $\operatorname{Regret}_{\phi_{\Omega_r}}(h) := R_{\phi_{\Omega_r}}(h) - \min_{h} R_{\phi_{\Omega_r}}(h)$ $= \mathbb{E}_X[R_{\phi_{\Omega_r}}(h(X), \eta(X)) - \min_{\boldsymbol{\theta} \in \mathbb{R}^d} R_{\phi_{\Omega_r}}(\boldsymbol{\theta}, \eta(X))]$ $= \operatorname{Regret}(h(X), \eta(X)) : \operatorname{Pointwise Surrogate Regret}(h(X), \eta(X)) : \operatorname{Pointwise Surrogate}(h(X), \eta(X)) : \operatorname{Pointwise}(h(X), \eta(X)) : \operatorname{Pointwise Surrogate}(h(X), \eta(X)) : \operatorname{Pointwise}(h(X), \eta(X)) : \operatorname{Pointwise}($

Pointwise surrogate regret of Conv-FY loss:

$$ext{Regret}_{\phi_{\Omega_{r}}}(oldsymbol{ heta},oldsymbol{\eta}) \!=\! R_{\phi_{\Omega_{r}}}(oldsymbol{ heta},oldsymbol{\eta}) \!-\! \min_{oldsymbol{ heta}\in\,\mathbb{R}^{d}}\! R_{\phi_{\Omega_{r}}}(oldsymbol{ heta},oldsymbol{\eta})$$

• Recap: Surrogate regret: $\operatorname{Regret}_{\phi_{\Omega_r}}(h) \coloneqq R_{\phi_{\Omega_r}}(h) - \min_{h} R_{\phi_{\Omega_r}}(h)$ $= \mathbb{E}_X[R_{\phi_{\Omega_r}}(h(X), \boldsymbol{\eta}(X)) - \min_{\boldsymbol{\theta} \in \mathbb{R}^d} R_{\phi_{\Omega_r}}(\boldsymbol{\theta}, \boldsymbol{\eta}(X))]$ $\operatorname{Regret}(h(X), \boldsymbol{\eta}(X)) \colon \operatorname{Pointwise Surrogate Regret}$

Pointwise surrogate regret of Conv-FY loss:

$$\mathrm{Regret}_{\phi_{\Omega_{r}}}(oldsymbol{ heta},oldsymbol{\eta}) \!=\! R_{\phi_{\Omega_{r}}}(oldsymbol{ heta},oldsymbol{\eta}) \!-\! \min_{oldsymbol{ heta}\in\,\mathbb{R}^{d}}\! R_{\phi_{\Omega_{r}}}(oldsymbol{ heta},oldsymbol{\eta})$$

Surrogate regret decomposition:

$$ext{Regret}_{\phi_{\Omega_r}}(oldsymbol{ heta},oldsymbol{\eta}) = R_{\phi_{\Omega}}(oldsymbol{ heta} + \mathcal{L}^{oldsymbol{
ho}}oldsymbol{\pi}^*,oldsymbol{\eta}) + \sum_{t=1}^N \pi^*_t ext{Regret}_{\ell}(t,oldsymbol{\eta}), \quad orall oldsymbol{\pi}^* \in \Pi(oldsymbol{ heta})$$

• Recap: Surrogate regret: $\operatorname{Regret}_{\phi_{\Omega_r}}(h) \coloneqq R_{\phi_{\Omega_r}}(h) - \min_{h} R_{\phi_{\Omega_r}}(h)$ $= \mathbb{E}_X[R_{\phi_{\Omega_r}}(h(X), \boldsymbol{\eta}(X)) - \min_{\boldsymbol{\theta} \in \mathbb{R}^d} R_{\phi_{\Omega_r}}(\boldsymbol{\theta}, \boldsymbol{\eta}(X))]$ $\operatorname{Regret}(h(X), \boldsymbol{\eta}(X)) \colon \operatorname{Pointwise Surrogate Regret}$

Pointwise surrogate regret of Conv-FY loss:

$$ext{Regret}_{\phi_{\Omega_r}}(oldsymbol{ heta},oldsymbol{\eta}) \!=\! R_{\phi_{\Omega_r}}(oldsymbol{ heta},oldsymbol{\eta}) \!- \min_{oldsymbol{ heta} \in \mathbb{R}^d} \! R_{\phi_{\Omega_r}}(oldsymbol{ heta},oldsymbol{\eta})$$

Surrogate regret decomposition:

$$\operatorname{Regret}_{\phi_{\Omega_{\tau}}}(oldsymbol{ heta},oldsymbol{\eta}) = R_{\phi_{\Omega}}(oldsymbol{ heta} + \mathcal{L}^{oldsymbol{
ho}}oldsymbol{\pi}^*,oldsymbol{\eta}) + \sum_{t=1}^{N} \pi^*_t \operatorname{Regret}_{\ell}(t,oldsymbol{\eta}), \quad orall oldsymbol{\pi}^* \in \Pi(oldsymbol{ heta})$$

Risk of FY loss ϕ_{Ω} (≥ 0) Convex combination of target regret

• Recap: Surrogate regret: $\operatorname{Regret}_{\phi_{\Omega_r}}(h) \coloneqq R_{\phi_{\Omega_r}}(h) - \min_{h} R_{\phi_{\Omega_r}}(h)$ $= \mathbb{E}_X[R_{\phi_{\Omega_r}}(h(X), \boldsymbol{\eta}(X)) - \min_{\boldsymbol{\theta} \in \mathbb{R}^d} R_{\phi_{\Omega_r}}(\boldsymbol{\theta}, \boldsymbol{\eta}(X))]$ $\operatorname{Regret}(h(X), \boldsymbol{\eta}(X)) \colon \operatorname{Pointwise Surrogate Regret}$

Pointwise surrogate regret of Conv-FY loss:

$$\mathrm{Regret}_{\phi_{\Omega_r}}(oldsymbol{ heta},oldsymbol{\eta}) \!=\! R_{\phi_{\Omega_r}}(oldsymbol{ heta},oldsymbol{\eta}) \!-\! \min_{oldsymbol{ heta} \in \mathbb{R}^d} \! R_{\phi_{\Omega_r}}(oldsymbol{ heta},oldsymbol{\eta})$$

Surrogate regret decomposition:

$$ext{Regret}_{\phi_{\Omega_{\tau}}}(oldsymbol{ heta},oldsymbol{\eta})\!\geq\! R_{\phi_{\Omega}}(oldsymbol{ heta}+\mathcal{L}^{oldsymbol{
ho}}oldsymbol{\pi}^*,oldsymbol{\eta})\!+\sum_{t=1}^{N}\pi^*_t ext{Regret}_{\ell}(t,oldsymbol{\eta}),\quadoralloldsymbol{\pi}^*\!\in\!\Pi(oldsymbol{ heta})$$

$$\mathrm{Regret}_{\phi_{\Omega_{r}}}(oldsymbol{ heta},oldsymbol{\eta})\!\geq\sum_{t=1}^{N}\pi^{*}\!\left(t
ight)\mathrm{Regret}_{\ell}\!\left(t,oldsymbol{\eta}
ight)$$

$$orall \hat{t} \in rgmax_{t \in \widehat{\mathcal{Y}}} \pi^*(t) \colon \pi^*(\hat{t}) \geq 1/N ext{ since } oldsymbol{\pi}^* \in \Delta^N$$

$$\mathrm{Regret}_{\phi_{\Omega_{r}}}(oldsymbol{ heta},oldsymbol{\eta})\!\geq\sum_{t=1}^{N}\pi^{*}\!\left(t
ight)\mathrm{Regret}_{\ell}\!\left(t,oldsymbol{\eta}
ight)$$

$$orall \, \hat{t} \in rgmax_{t \in \, \widehat{\mathcal{Y}}} \pi^*(t) \colon \pi^*(\hat{t}) \geq 1/N \, ext{ since } oldsymbol{\pi}^* \in \Delta^N$$

$$\mathrm{Regret}_{\phi_{\Omega_r}}(oldsymbol{ heta},oldsymbol{\eta})\!\geq\!\mathrm{Regret}_\ellig(\hat{t},oldsymbol{\eta}ig)/N$$

Linear Regret Link Construction

$$\mathrm{Regret}_{\phi_{\Omega_{r}}}(oldsymbol{ heta},oldsymbol{\eta})\!\geq\sum_{t=1}^{N}\pi^{*}(t)\,\mathrm{Regret}_{\ell}(t,oldsymbol{\eta})$$

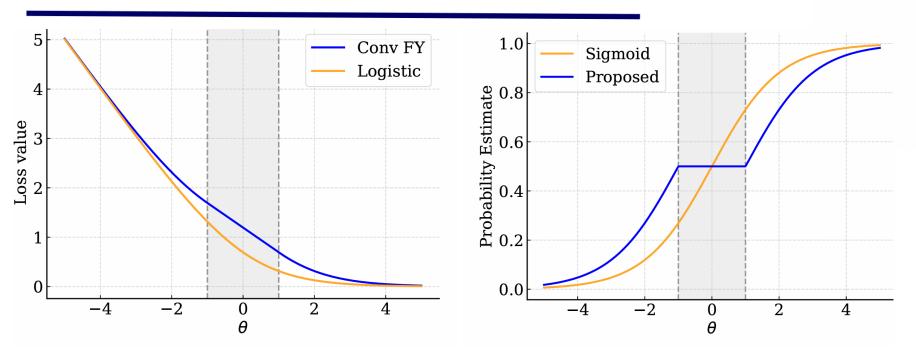
$$orall \hat{t} \in rgmax_{t \in \, \hat{\mathcal{Y}}} \pi^*(t) \colon \pi^*(\hat{t}) \geq 1/N ext{ since } oldsymbol{\pi}^* \in \Delta^N$$

$$\mathrm{Regret}_{\phi_{\Omega_{ au}}}(oldsymbol{ heta},oldsymbol{\eta})\!\geq\!\mathrm{Regret}_{\ell}ig(\hat{t},oldsymbol{\eta}ig)/N$$

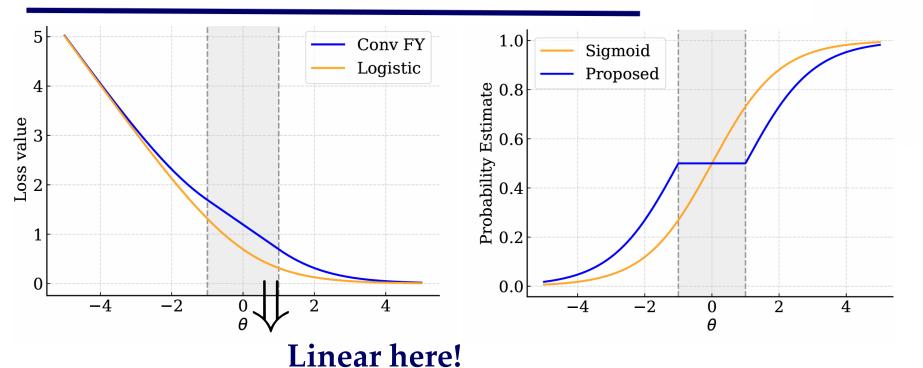
(π -argmax link): For function $\pi^*: \mathbb{R}^d \to \Delta^N$, if $\pi^*(\theta) \in \Pi(\theta)$ for any $\theta \in \mathbb{R}^d$:

 $\operatorname{Regret}_{\ell}(\varphi(\boldsymbol{\theta}), \boldsymbol{\eta}) \leq N \operatorname{Regret}_{\phi_0}(\boldsymbol{\theta}, \boldsymbol{\eta}), \quad \forall (\boldsymbol{\theta}, \boldsymbol{\eta}) \in \mathbb{R}^d \times \Delta^K, \quad \varphi \coloneqq \operatorname{argmax} \circ \boldsymbol{\pi}^*$

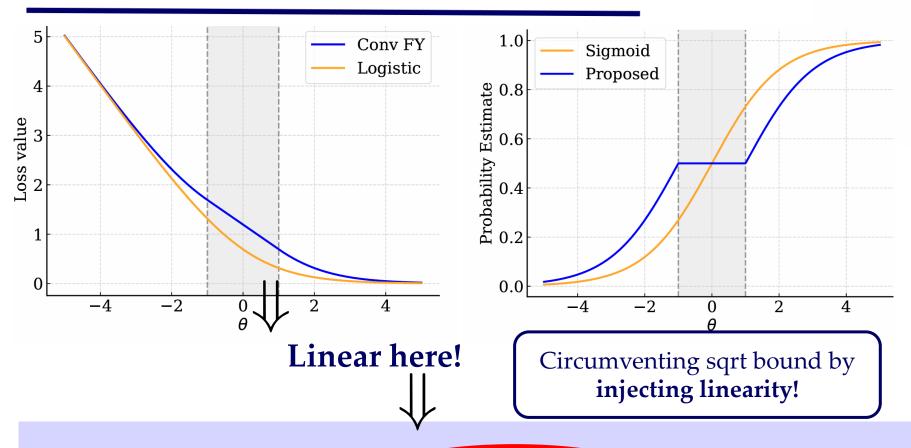
Binary Case Visualization



Binary Case Visualization



Binary Case Visualization



[FW21, Theorem 2] ... if ϕ is **locally strongly convex and locally smooth**, the surrogate regret bound is **at least square-root......**