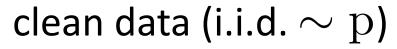
On the Optimality of the Median-of-Means Estimator under Adversarial Contamination

Xabier de Juan Santiago Mazuelas Basque Center for Applied Mathematics

Conference on Neural Information Processing Systems
NeurIPS 2025

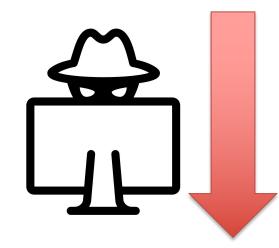
clean data (i.i.d. $\sim p$)

11 9	12	10	7
------	----	----	---



11 9 12 10 7

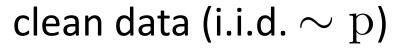




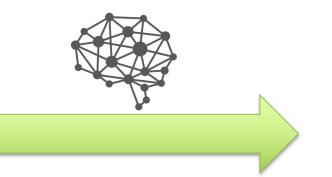
adversary modifies α fraction of the data

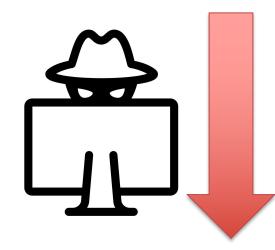
11 9 12 10 7

contaminated data (non i.i.d.)



11 9 12 10 7

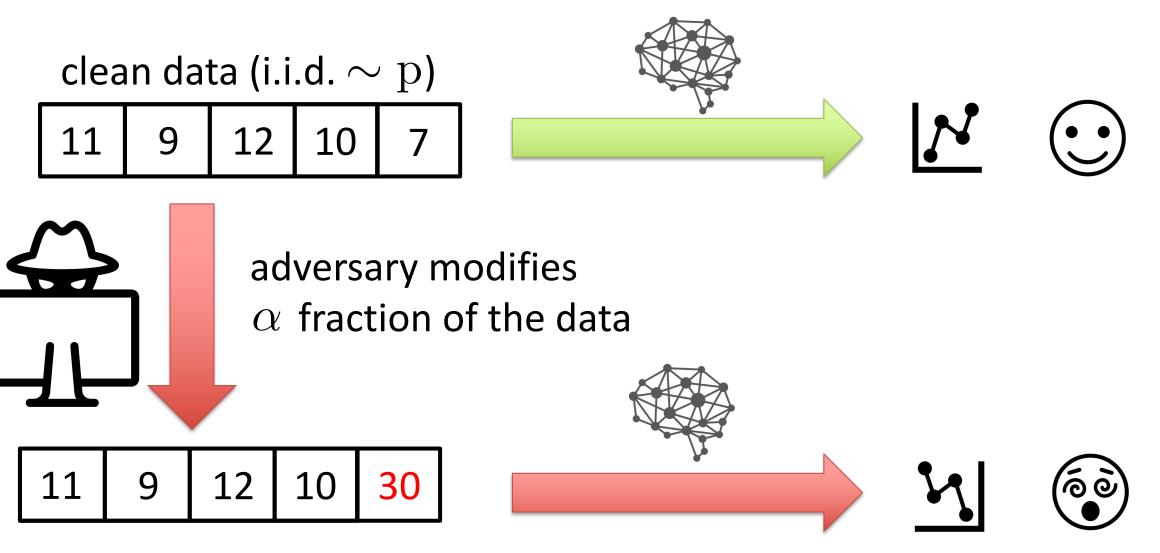




adversary modifies α fraction of the data

11 9 12 10 30

contaminated data (non i.i.d.)



contaminated data (non i.i.d.)

Mean of the clean distribution

Class of distributions

$$|\widehat{\mu} - \mu_{\mathrm{p}}| \leq \sigma_{\mathrm{p}} \varepsilon(\alpha)$$
 with high probability $\forall \mathrm{p} \in \mathcal{P}$

Estimator of the mean

$$\varepsilon(\alpha) \not\to 0$$
 when $n \to +\infty$

Mean of the clean distribution

Class of distributions

$$|\widehat{\mu} - \mu_{\mathrm{p}}| \leq \sigma_{\mathrm{p}} \varepsilon(\alpha)$$
 with high probability $\forall \mathrm{p} \in \mathcal{P}$

Estimator of the mean

$$\varepsilon(\alpha) \not\to 0$$
 when $n \to +\infty$

Mean of the clean distribution

Class of distributions

$$|\widehat{\mu} - \mu_{\mathrm{p}}| \leq \sigma_{\mathrm{p}} \varepsilon(\alpha)$$
 with high probability $\forall \mathrm{p} \in \mathcal{P}$

Estimator of the mean

$$\varepsilon(\alpha) \not\to 0$$
 when $n \to +\infty$

Mean of the clean distribution

Class of distributions

$$|\widehat{\mu} - \mu_{\mathrm{p}}| \leq \sigma_{\mathrm{p}} \varepsilon(\alpha)$$
 with high probability $\forall \mathrm{p} \in \mathcal{P}$

Estimator of the mean

$$\varepsilon(\alpha) \not\to 0$$
 when $n \to +\infty$

Mean of the clean distribution

Class of distributions

$$|\widehat{\mu} - \mu_{\mathrm{p}}| \leq \sigma_{\mathrm{p}} \varepsilon(\alpha)$$
 with high probability $\forall \mathrm{p} \in \mathcal{P}$

Estimator of the mean

$$\varepsilon(\alpha) \not\to 0$$
 when $n \to +\infty$

Previous work on the Median-of-Means (MoM)

- Lacks analysis of the asymptotic bias
- Focuses only on the class of distributions with finite variance
- Considers a weaker contamination model

Contributions

	MoM	Trimmed	M-
	[this work]	mean	estimator
Heavy-tailed (finite variance)	$\sqrt{\alpha}$	$\sqrt{\alpha}$	$\sqrt{\alpha}$
Heavy-tailed (infinite variance)	$lpha^{rac{r}{1+r}}$		$lpha^{rac{r}{1+r}}$
Light-tailed (sub-exponential)	$lpha^{2/3}$	$\alpha\sqrt{\log(1/\alpha)}$	

MoM is optimal for heavy-tailed distributions

Theorem. Let $\widehat{\mu}_{\mathrm{MoM}}$ be MoM with a number of blocks $k = \mathcal{O}(\alpha n)$

• If $p \in \mathcal{P}_2$, i.e., finite variance

Minimax optimal!

$$|\widehat{\mu}_{\mathrm{MoM}} - \mu_{\mathrm{p}}| \leq \mathcal{O}(\sqrt{\alpha})$$
 with high probability

• If $p \in \mathcal{P}_{1+r}$, i.e., finite (1+r)-th moment $|\widehat{\mu}_{MoM} - \mu_p| \leq \mathcal{O}\left(\alpha^{\frac{r}{1+r}}\right) \quad \text{with high probability}$

MoM is sub-optimal for light-tailed distributions

Theorem. Let $\widehat{\mu}_{\mathrm{MoM}}$ be MoM with a num. of blocks $k=\mathcal{O}(\alpha^{2/3}n)$ Then, for any light-tailed distribution p

$$|\widehat{\mu}_{\mathrm{MoM}} - \mu_{\mathrm{p}}| \leq \mathcal{O}\left(\alpha^{2/3}\right)$$
 with high probability.

Sub-optimal!

Theorem. There is a light-tailed distribution & attack s.t. for any k

$$|\widehat{\mu}_{\mathrm{MoM}} - \mu_{\mathrm{p}}| \geq \mathcal{O}\left(\alpha^{2/3}\right)$$
 with high probability