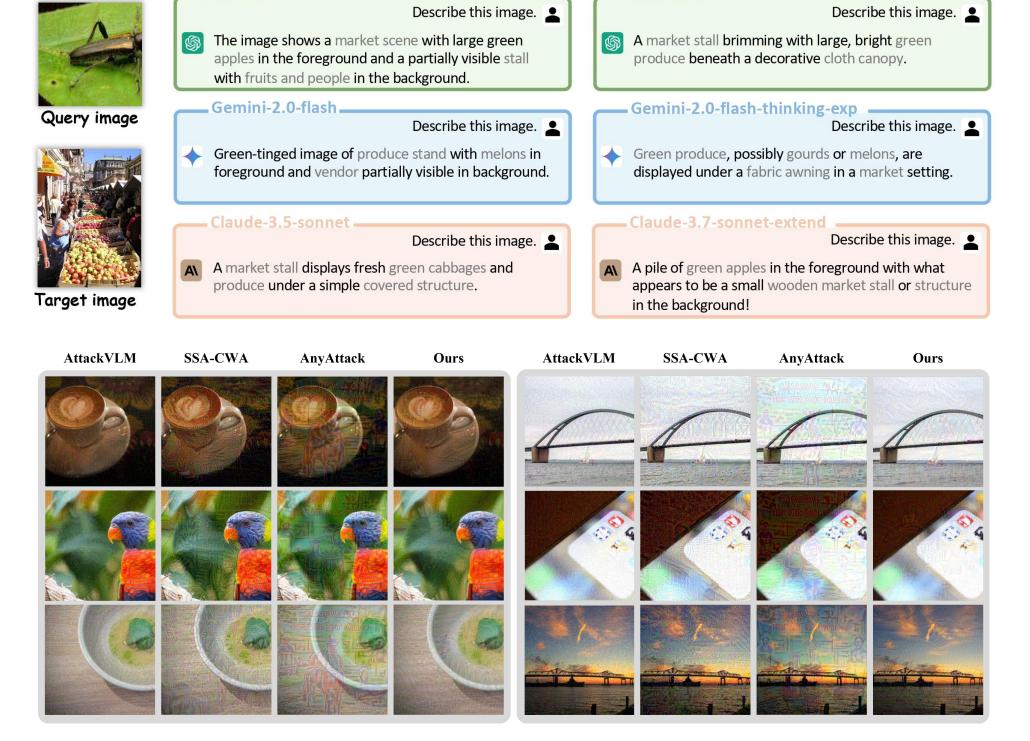
A Frustratingly Simple Yet Highly Effective Attack Baseline: Over <u>90%</u> Success Rate Against the Strong Black-box Models of GPT-4.5/4o/o1

NEURAL INFORMATION PROCESSING SYSTEMS

WOHAMED BIN ZAYED
UNIVERSITY OF
ARTIFICIAL INTELLIGENCE

Zhaoyi Li*, Xiaohan Zhao*, Dong-Dong Wu, Jiacheng Cui, Zhiqiang Shen†

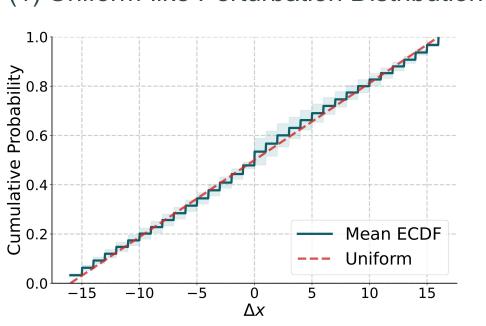
Our Attack Results

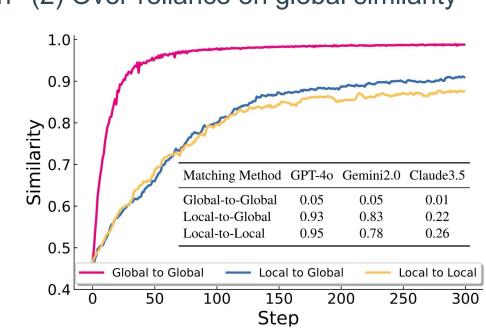


Visualization of adversarial samples from different attack methods.

Motivation: Investigations Over Failed Attacks

(1) Uniform-like Perturbation Distribution (2) Over-reliance on global similarity





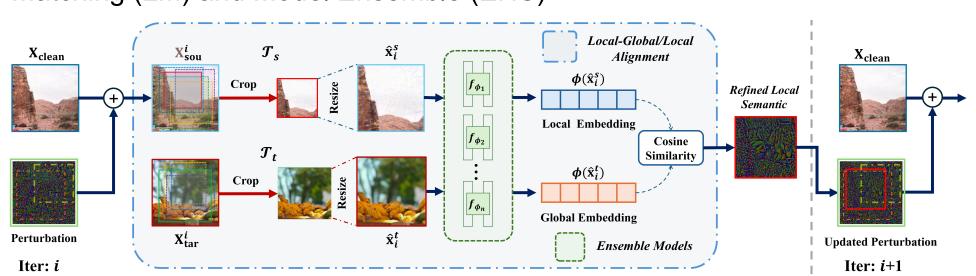
(3) Vague Description										
	GPT-40	Claude-3.5	Gemini-2.0							
AttackVLM	6%	11%	45%							
AnyAttack	13%	13%	76%							
SSA-CWA	21%	29%	75%							

Percentage of failed samples with value descriptions

Algorithm 1 M-Attack Training Procedure	
Require: clean image $\mathbf{X}_{\text{clean}}$, target image \mathbf{X}_{tar} surrogate model ensemble $\phi = \{\phi_j\}_{j=1}^m$, st	, perturbation budget ϵ , iterations n , loss function \mathcal{L} ep size α .
1: Initialize: $\mathbf{X}_{\text{sou}}^0 = \mathbf{X}_{\text{clean}}$ (i.e., $\delta_0 = 0$);	\triangleright Initialize adversarial image \mathbf{X}_{so}
2: for $i = 0$ to $n - 1$ do	
3: $\hat{\mathbf{x}}_i^s = \mathcal{T}_s(\mathbf{X}_{\mathrm{sou}}^i), \hat{\mathbf{x}}_i^t = \mathcal{T}_t(\mathbf{X}_{\mathrm{tar}}^i);$	\triangleright Perform random crop, next step $\mathbf{X}_{\mathrm{sou}}^{i+1} \leftarrow \hat{\mathbf{x}}_{i+1}^{s}$
4: Compute $\frac{1}{m} \sum_{j=1}^{m} \mathcal{L}\left(f_{\phi_j}(\hat{\mathbf{x}}_i^s), f_{\phi_j}(\hat{\mathbf{x}}_i^t)\right)$) in Eq. (5);
5: Update $\hat{\mathbf{x}}_{i+1}^s$ by:	
6: $g_i = \frac{1}{m} \nabla_{\hat{\mathbf{x}}_i^s} \sum_{j=1}^m \mathcal{L}\left(f_{\phi_j}(\hat{\mathbf{x}}_i^s), \right)$	$f_{\phi_j}(\hat{\mathbf{x}}_i^t);$
7: $\delta_{i+1}^l = \text{Clip}(\delta_i^l + \alpha \cdot \text{sign}(g_i), -$	$-\epsilon,\epsilon);$
8: $\hat{\mathbf{x}}_{i+1}^s = \hat{\mathbf{x}}_i^s + \delta_{i+1}^l;$	
9: end for	
10: return X_{adv} ;	$ hd \mathbf{X}^{n-1}_{\mathrm{sou}} o \mathbf{X}_{\mathrm{ad}}$

Methodology

Our method is based on two components: *Local-to-Global* or *Local-to-Local* Matching (LM) and Model Ensemble (ENS)



Local-level Matching via Cropping

Step 1 Step 11 Step 21 Step 31 Step 41 Step 50 0.8 Ferturbation Magnitude 0.2 de 0.2 d

 Re-Formulation under Locallevel Matching

$$\{\hat{\mathbf{x}}_1^s, \dots, \hat{\mathbf{x}}_n^s\} = \mathcal{T}_s(\mathbf{X}_{\mathrm{sou}})$$

 $\{\hat{\mathbf{x}}_1^t, \dots, \hat{\mathbf{x}}_n^t\} / \{\hat{\mathbf{x}}_g^t\} = \mathcal{T}_t(\mathbf{X}_{\mathrm{tar}})$
 $\mathcal{M}_{\mathcal{T}_s, \mathcal{T}_t} = \mathbf{CS}(f_{\phi}(\hat{\mathbf{x}}_i^s), f_{\phi}(\hat{\mathbf{x}}_i^t))$

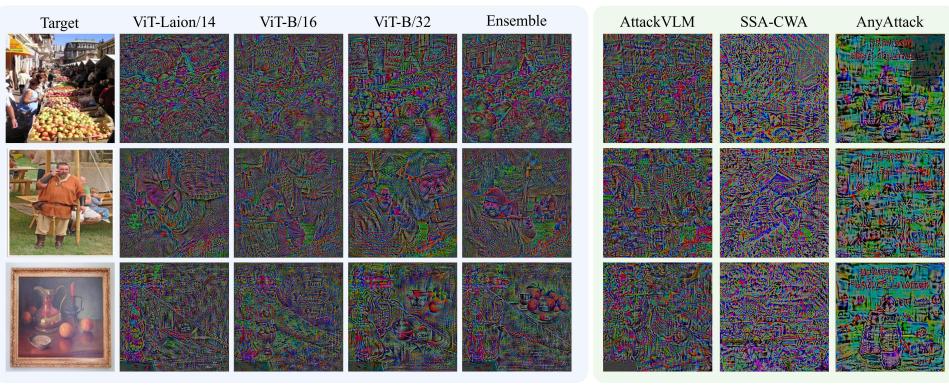
Critical properties of local mapping: $\forall i, j, \quad \hat{\mathbf{x}}_i \cap \hat{\mathbf{x}}_j \neq \emptyset$

 $\forall i, j, \quad |\hat{\mathbf{x}}_i \cup \hat{\mathbf{x}}_j| > |\hat{\mathbf{x}}_i| \text{ and } |\hat{\mathbf{x}}_i \cup \hat{\mathbf{x}}_j| > |\hat{\mathbf{x}}_j|$

0.82 0.53 0.15 0.95

Claude-3.7-Sonnet 0.30 0.16 0.03 0.37

Model Ensemble for Shared, High-quality Semantics



Different patch sizes capture complementary scales (objects vs. details). ENS fuses them, yielding perturbations with stronger, more coherent semantics compared to other methods.

Experimental Results

Claude-3.7-thinking

Gemini-2.0-flash-thinking-exp 0.78 0.59 0.17 0.81

Method	Model	GPT-4o				Gemin	i-2.0	Claude-3.5				Imperceptibility			
	Model	$ KMR_a $	KMR_b	KMR_c	ASR	$ KMR_a $	KMR_b	KMR_c	ASR	$ KMR_a $	KMR_b	KMR_c	ASR	$\ell_1(\downarrow)$	$\ell_2(\downarrow)$
	B/16	0.09	0.04	0.00	0.02	0.07	0.02	0.00	0.00	0.06	0.03	0.00	0.01	0.034	0.040
AttackVLM	B/32	0.08	0.02	0.00	0.02	0.06	0.02	0.00	0.00	0.04	0.01	0.00	0.00	0.036	0.041
	Laion [†]	0.07	0.04	0.00	0.02	0.07	0.02	0.00	0.01	0.05	0.02	0.00	0.01	0.035	0.040
AdvDiffVLM	Ensemble	0.02	0.00	0.00	0.02	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.064	0.095
SSA-CWA	Ensemble	0.11	0.06	0.00	0.09	0.05	0.02	0.00	0.04	0.07	0.03	0.00	0.05	0.059	0.060
AnyAttack	Ensemble	0.44	0.20	0.04	0.42	0.46	0.21	0.05	0.48	0.25	0.13	0.01	0.23	0.048	0.052
M-Attack (Ours)	Ensemble	0.82	0.54	0.13	0.95	0.75	0.53	0.11	0.78	0.31	0.18	0.03	0.29	0.030	0.036
														-	
	Method KMR _a KMR _b KMR _c ASR							Meth	nod	KN	MR_a K	MR_b	KMR,	c ASR	-

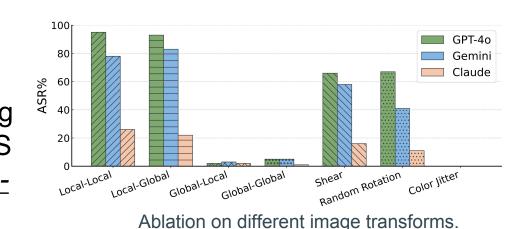
_____Closed-Source
Open-Source

0.30 0.20 0.06 0.35

		Qwen-2	.5-VL			LLaVA-1.5						
Method	$ KMR_a $	KMR_b	KMR_c	ASR	$ KMR_a $	KMR_b	KMR_c	ASR				
AttackVLM	0.12	0.04	0.00	0.01	0.11	0.03	0.00	0.07				
SSA-CWA	0.36	0.25	0.04	0.38	0.29	0.17	0.04	0.34				
AnyAttack	0.53	0.28	0.09	0.53	0.60	0.32	0.07	0.58				
M-Attack	0.80	0.65	0.17	0.90	0.85	0.59	0.20	0.95				

Ablation-local matching

Ablation on other image transforms with/without local-level matching confirms the effectiveness of matching locally for refined details. LM and ENS work in concert, producing *more-than-additive* improvements

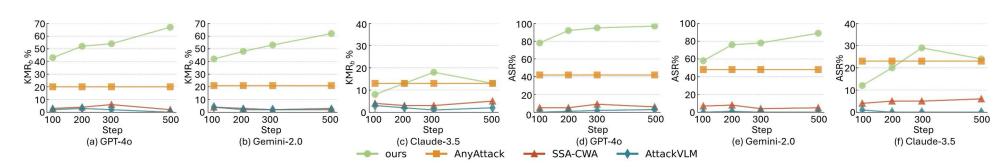


GPT-40 Gemini Claude

Ablation on LM and ENS.

Ablation-different budget constraints

Our method achieves SOTA results under different constraints on imperceptibility (ℓ_{∞}) and computation (steps)



Comparison of different attack algorithms under different optimization steps

		GPT-40			Gemini-2.0			Claude-3.5				Imperceptibility			
ϵ	Method	$ KMR_a $	KMR_b	KMR_c	ASR	$ KMR_a $	KMR_b	KMR_c	ASR	$ KMR_a $	KMR_b	KMR_c	ASR	$ \ell_1(\downarrow)$	$\ell_2(\downarrow)$
8	AttackVLM	0.08	0.04	0.00	0.02	0.09	0.02	0.00	0.00	0.06	0.03	0.00	0.00	0.010	0.011
	SSA-CWA	0.05	0.03	0.00	0.03	0.04	0.03	0.00	0.04	0.03	0.02	0.00	<u>0.01</u>	0.015	0.015
4	AnyAttack	0.07	0.02	0.00	0.05	0.10	0.04	0.00	0.05	0.03	0.02	0.00	0.02	0.014	0.015
	M-Attack (Ours)	0.30	0.16	0.03	0.26	0.20	0.11	0.02	0.11	0.05	0.01	0.00	<u>0.01</u>	0.009	0.010
	AttackVLM	0.08	0.02	0.00	0.01	0.08	0.03	0.00	0.02	0.05	0.02	0.00	0.00	0.020	0.022
1100	SSA-CWA	0.06	0.02	0.00	0.04	0.06	0.02	0.00	0.06	0.04	0.02	0.00	0.01	0.030	0.030
8	AnyAttack	0.17	0.06	0.00	0.13	0.20	0.08	0.01	0.14	0.07	0.03	0.00	0.06	0.028	0.029
	M-Attack (Ours)	0.74	0.50	0.12	0.82	0.46	0.32	0.08	0.46	0.08	0.03	0.00	<u>0.05</u>	0.017	0.020
	AttackVLM	0.08	0.02	0.00	0.02	0.06	0.02	0.00	0.00	0.04	0.01	0.00	0.00	0.036	0.041
	SSA-CWA	0.11	0.06	0.00	0.09	0.05	0.02	0.00	0.04	0.07	0.03	0.00	0.05	0.059	0.060
16	AnyAttack	0.44	0.20	0.04	0.42	0.46	0.21	0.05	0.48	0.25	0.13	0.01	0.23	0.048	0.052
	M-Attack (Ours)	0.82	0.54	0.13	0.95	0.75	0.53	0.11	0.78	0.31	0.18	0.03	0.29	0.030	0.036

Comparison of different attack algorithms under different $\ell_{\infty}(\epsilon)$ constraints

GitHub & Website

- GitHub: https://github.com/VILA-Lab/M-Attack
- Website: https://vila-lab.github.io/M-Attack-Website/

References

- Y. Zhao et al. (2023). "On evaluating adversarial robustness of large vision-language models." In: International Conference on Advanced Neural Information Processing Systems, pp. 54111–54138.
- J. Zhang et al. (2025). "Anyattack: Towards large-scale self-supervised generation of targeted adversarial examples for vision-language models." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19900-19909.
- Y. Dong et al. (2023). "How Robust is Google's Bard to Adversarial Image Attacks?". In: arXiv preprint arXiv:2309.11751.
- Q. Guo et al. (2024). "Efficient generation of targeted and transferable adversarial examples for vision-language models via diffusion models." In: IEEE Transactions on Information Forensics and Security. IEEE, pp. 1333-1348