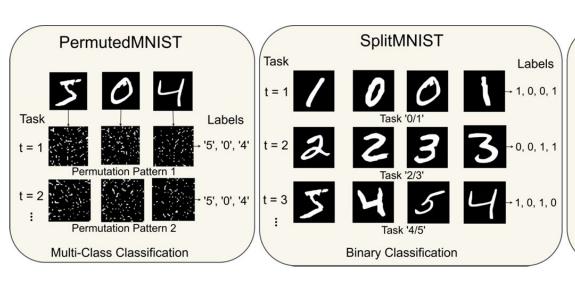
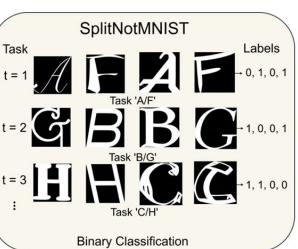
Temporal-Difference Variational Continual Learning

Luckeciano Melo, Alessandro Abate, Yarin Gal University of Oxford

Problem Setting

- (Supervised) Continual Learning
 - Assume a task distribution \mathcal{T}
 - Each task $t \sim \mathcal{T}$ is represented by a dataset of pairs $\{(m{x}_t, y_t)\}^{N_t}$
 - At each timestep t, the model receives a training stream \mathcal{D}_t
 - Evaluation considers held-out sets from all previously observed tasks





Variational Continual Learning

- Bayesian Framework
 - Assume a prior over parameters $p(\theta)$
 - Given evidence of T tasks, learn posterior $p(\boldsymbol{\theta} \mid \mathcal{D}_{1:T})$
 - Assuming tasks are i.i.d, we find the following recursion:

$$p(\boldsymbol{\theta} \mid \mathcal{D}_{1:T}) \propto p(\boldsymbol{\theta}) p(\mathcal{D}_{1:T} \mid \boldsymbol{\theta}) \stackrel{\text{i.i.d}}{=} p(\boldsymbol{\theta}) \prod_{t=1}^{T} p(\mathcal{D}_t \mid \boldsymbol{\theta}) \propto p(\boldsymbol{\theta} \mid \mathcal{D}_{1:T-1}) p(\mathcal{D}_T \mid \boldsymbol{\theta})$$

- Variational CL
 - Approximate via Variational Inference

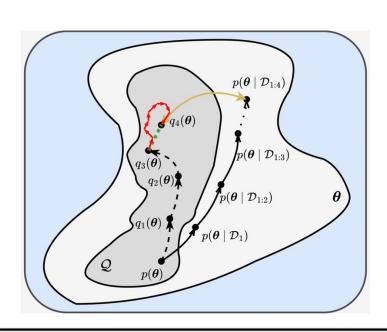
$$q_t(\boldsymbol{\theta}) = \operatorname*{arg\,min}_{q \in \mathcal{Q}} \mathcal{D}_{KL}(q(\boldsymbol{\theta}) \mid\mid \frac{1}{Z_t} q_{t-1}(\boldsymbol{\theta}) p(\mathcal{D}_t \mid \boldsymbol{\theta}))$$

- This is equivalent to maximizing the ELBO:

$$\mathcal{L}_{VCL}^{t}(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\theta} \sim q_{t}(\boldsymbol{\theta})}[\log p(\mathcal{D}_{t} \mid \boldsymbol{\theta})] - \mathcal{D}_{KL}(q_{t}(\boldsymbol{\theta}) \mid\mid q_{t-1}(\boldsymbol{\theta}))$$

Problem

$$\mathcal{L}_{VCL}^{t}(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\theta} \sim q_{t}(\boldsymbol{\theta})}[\log p(\mathcal{D}_{t} \mid \boldsymbol{\theta})] - \mathcal{D}_{KL}(q_{t}(\boldsymbol{\theta}) \mid\mid q_{t-1}(\boldsymbol{\theta}))$$



- Several approximation errors may bias the posterior
 - Likelihood term estimation
 - Optimization errors
 - Function class may not be expressive enough to represent the true posterior
- As it relies on a single previous posterior, errors compound over successive updates

Problem

$$q_t(\boldsymbol{\theta}) = \arg\min_{q \in \mathcal{Q}} \mathcal{D}_{KL}(q(\boldsymbol{\theta}) \mid\mid \frac{1}{Z_t} q_{t-1}(\boldsymbol{\theta}) p(\mathcal{D}_t \mid \boldsymbol{\theta}))$$

Proposition 4.1. The standard KL minimization objective in Variational Continual Learning (Equation 2) is equivalently represented as the following objective, where $n \in \mathbb{N}_0$ is a hyperparameter:

$$q_{t}(\boldsymbol{\theta}) = \underset{q \in \mathcal{Q}}{\operatorname{arg\,max}} \mathbb{E}_{\boldsymbol{\theta} \sim q_{t}(\boldsymbol{\theta})} \left[\sum_{i=0}^{n-1} \frac{(n-i)}{n} \log p(\mathcal{D}_{t-i} \mid \boldsymbol{\theta}) \right] - \sum_{i=0}^{n-1} \frac{1}{n} \mathcal{D}_{KL}(q_{t}(\boldsymbol{\theta}) \mid\mid q_{t-i-1}(\boldsymbol{\theta})). \tag{4}$$

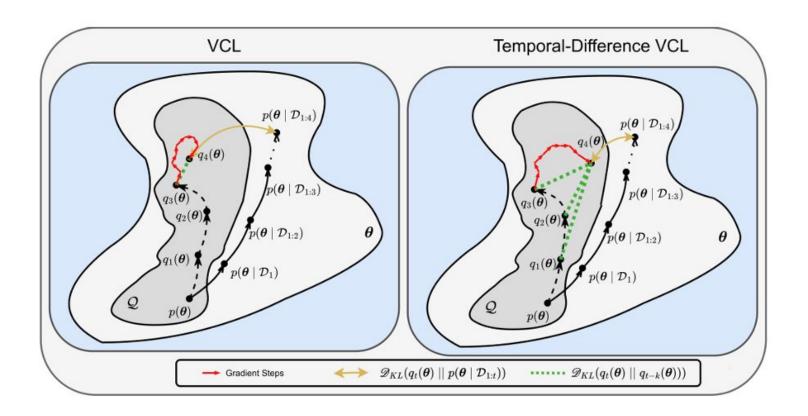
Problem

$$q_t(\boldsymbol{\theta}) = \arg\min_{q \in \mathcal{Q}} \mathcal{D}_{KL}(q(\boldsymbol{\theta}) \mid\mid \frac{1}{Z_t} q_{t-1}(\boldsymbol{\theta}) p(\mathcal{D}_t \mid \boldsymbol{\theta}))$$

Proposition 4.2. The standard KL minimization objective in VCL (Equation 2) is equivalently represented as the following objective, with $n \in \mathbb{N}_0$, and $\lambda \in [0,1)$ hyperparameters:

$$q_{t}(\boldsymbol{\theta}) = \underset{q \in \mathcal{Q}}{\operatorname{arg max}} \mathbb{E}_{\boldsymbol{\theta} \sim q_{t}(\boldsymbol{\theta})} \left[\sum_{i=0}^{n-1} \frac{\lambda^{i} (1 - \lambda^{n-i})}{1 - \lambda^{n}} \log p(\mathcal{D}_{t-i} \mid \boldsymbol{\theta}) \right]$$
$$- \sum_{i=0}^{n-1} \frac{\lambda^{i} (1 - \lambda)}{1 - \lambda^{n}} \mathcal{D}_{KL}(q_{t}(\boldsymbol{\theta}) \mid\mid q_{t-i-1}(\boldsymbol{\theta})).$$

Temporal-Difference VCL



Temporal-Difference VCL

- We can define a "n-Step TD VCL target" as:

$$TD_t(n) = \mathbb{E}_{\boldsymbol{\theta} \sim q_t(\boldsymbol{\theta})} \left[\sum_{i=0}^{n-1} \log p(\mathcal{D}_{t-i} \mid \boldsymbol{\theta})] \right] - \mathscr{D}_{KL}(q_t(\boldsymbol{\theta}) \mid\mid q_{t-n}(\boldsymbol{\theta}))$$

- 1) The optimization problem can be equivalently defined as, $\forall n \in \mathbb{N}_0$, $n \leq t$

$$q_t(\boldsymbol{\theta}) = \underset{q \in \mathcal{Q}}{\operatorname{arg\,max}} \operatorname{TD}_t(n)$$

- 2) TD-VCL objective is a discounted sum of TD targets:

$$q_t(\boldsymbol{\theta}) = \underset{q \in \mathcal{Q}}{\arg\max} \frac{1 - \lambda}{1 - \lambda^n} \underbrace{\left[\sum_{k=0}^{n-1} \lambda^k TD_t(k+1) \right]}_{\text{Discounted sum of TD targets}}.$$

- 3) TD-VCL objectives generalize a spectrum of Continual Learning algorithms

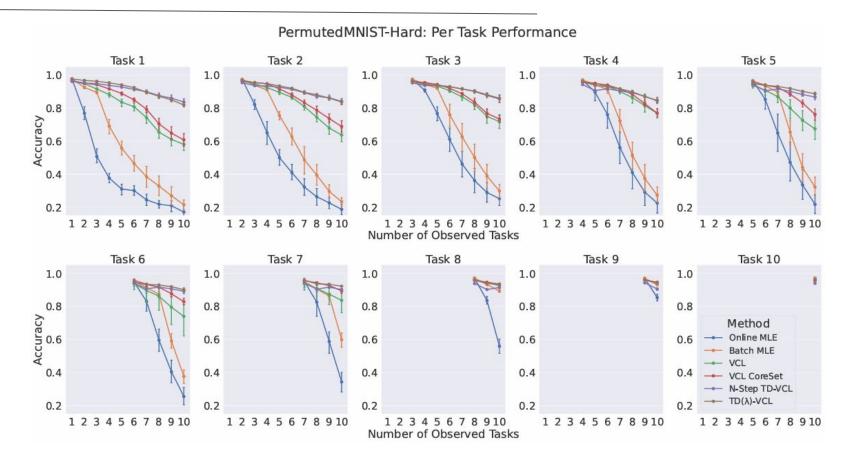
Results

	PermutedMNIST								
	t = 2	t = 3	t = 4	t = 5	t = 6	t = 7	t = 8	t = 9	t = 10
Online MLE	0.87±0.07	0.77±0.06	0.73±0.08	0.69±0.08	0.65±0.13	0.57±0.16	0.51±0.14	0.46±0.11	0.40±0.08
Batch MLE	0.95 ± 0.01	0.93 ± 0.01	0.88 ± 0.04	0.83±0.04	0.77 ± 0.10	0.71 ± 0.13	0.64 ± 0.12	0.57 ± 0.11	0.51 ± 0.06
VCL	0.95 ± 0.00	0.94 ± 0.01	0.93 ± 0.02	0.91 ± 0.02	0.89 ± 0.03	0.86 ± 0.03	0.83 ± 0.04	0.80 ± 0.06	0.78 ± 0.04
VCL CoreSet						0.89 ± 0.02			
n-Step TD-VCL	0.95 ± 0.01	0.94 ± 0.00	0.94 ± 0.00	0.93 ± 0.01	0.92±0.01	0.91 ± 0.01	0.90±0.02	0.89 ± 0.01	$0.88{\scriptstyle\pm0.02}$
$TD(\lambda)$ -VCL	0.97±0.00	0.96±0.00	0.95±0.00	0.94±0.01	0.93±0.01	0.92±0.01	0.91±0.01	0.90±0.01	0.89±0.02
	SplitMNIST-Hard					SplitNotMNIST-Hard			
	t = 2	t = 3	t = 4	t = 5		t = 2	t = 3	t = 4	t = 5
Online MLE	0.86±0.02	0.61±0.03	0.75±0.04	0.57±0.06		0.72±0.02	0.61±0.05	0.61±0.00	0.51±0.04
Batch MLE	0.95 ± 0.04	0.65 ± 0.04	0.82 ± 0.04	0.59 ± 0.03		0.71 ± 0.02	0.65 ± 0.03	0.61 ± 0.00	0.50 ± 0.06
VCL	0.87 ± 0.02	0.66±0.04	0.82 ± 0.03	0.64 ± 0.11		0.69 ± 0.04	0.63 ± 0.03	0.60 ± 0.00	0.51 ± 0.06
VCL CoreSet	0.93 ± 0.04	0.68 ± 0.07	0.84 ± 0.04	0.62±0.03		0.69 ± 0.04	0.65 ± 0.02	0.60 ± 0.01	0.51 ± 0.07
n-Step TD-VCL	0.98 ± 0.01	0.79 ± 0.08	0.88 ± 0.04	0.67 ± 0.04		0.72 ± 0.04	0.73 ± 0.05	0.70 ± 0.04	0.58 ± 0.08
$TD(\lambda)$ -VCL	0.98±0.01	0.81±0.07	0.89±0.03	0.66±0.02		0.74±0.02	0.73±0.03	0.69±0.03	0.58±0.09
	CIFAR100-10					TinyImageNet-10			
	t = 4	t =	6 t =	8 t=	: 10	t = 4	t = 6	t = 8	t = 10
Online MLE	0.57±0	.06 0.56±	0.03 0.53	±0.06 0.52	2±0.04 O	.45±0.02 ().44±0.01	0.45±0.02	0.44±0.03
Batch MLE	0.58±0	.04 0.58±	0.05 0.56	±0.06 0.54	l±0.07 O	.48±0.02 ().48±0.02	0.50±0.02	0.51±0.03
VCL	0.63 ± 0	.02 0.60±	0.02 0.61	±0.05 0.66	5±0.01 O	.51±0.03 (0.51±0.03	0.51±0.02	0.51±0.02
VCL CoreSet	0.63 ± 0	.03 0.63±	0.02 0.61	±0.02 0.65	5±0.02 O	.51±0.02 ().51±0.02	0.54±0.02	0.54 ± 0.02
n-Step TD-VC	L 0.67±0	$.02 \ 0.65 \pm$	0.01 0.68	±0.04 0.6 9)±0.02 0	.55±0.02 ().54±0.02	0.56±0.02	0.56±0.02

 0.66 ± 0.04 0.66 ± 0.02 0.67 ± 0.01 0.71 ± 0.01 0.56 ± 0.02 0.55 ± 0.03 0.56 ± 0.02 0.56 ± 0.02

 $TD(\lambda)$ -VCL

Results



Limitations / Future Work

- Limitations
 - Introduction of new hyperparameters, n and lambda
 - Relies on past posterior estimations, which increase memory requirements

- Future Work
 - Further connections with MDPs
 - Apply TD-VCL in problems that involves sequential VI, such as probabilistic meta-RL

Temporal-Difference Variational Continual Learning

Luckeciano Melo, Alessandro Abate, Yarin Gal University of Oxford

