

Confounding Robust Deep Reinforcement Learning: A Causal Approach

Elias Bareinboim

Speaker: Mingxuan Li CausalAl Lab @ Columbia University

December 2025

Off-policy learning with unknown behavioral policies may introduce biases.

Off-policy learning with unknown behavioral policies may introduce biases.

Q1: Can standard algorithm like DQN still learn optimal policies?

Off-policy learning with unknown behavioral policies may introduce biases.

Q1: Can standard algorithm like DQN still learn optimal policies?

Such biases are often due to observation/action space mismatches.

Off-policy learning with unknown behavioral policies may introduce biases.

Q1: Can standard algorithm like DQN still learn optimal policies?

Such biases are often due to observation/action space mismatches.

Q2: How do we model it formally with causal inference tools?

Off-policy learning with unknown behavioral policies may introduce biases.

Q1: Can standard algorithm like DQN still learn optimal policies?

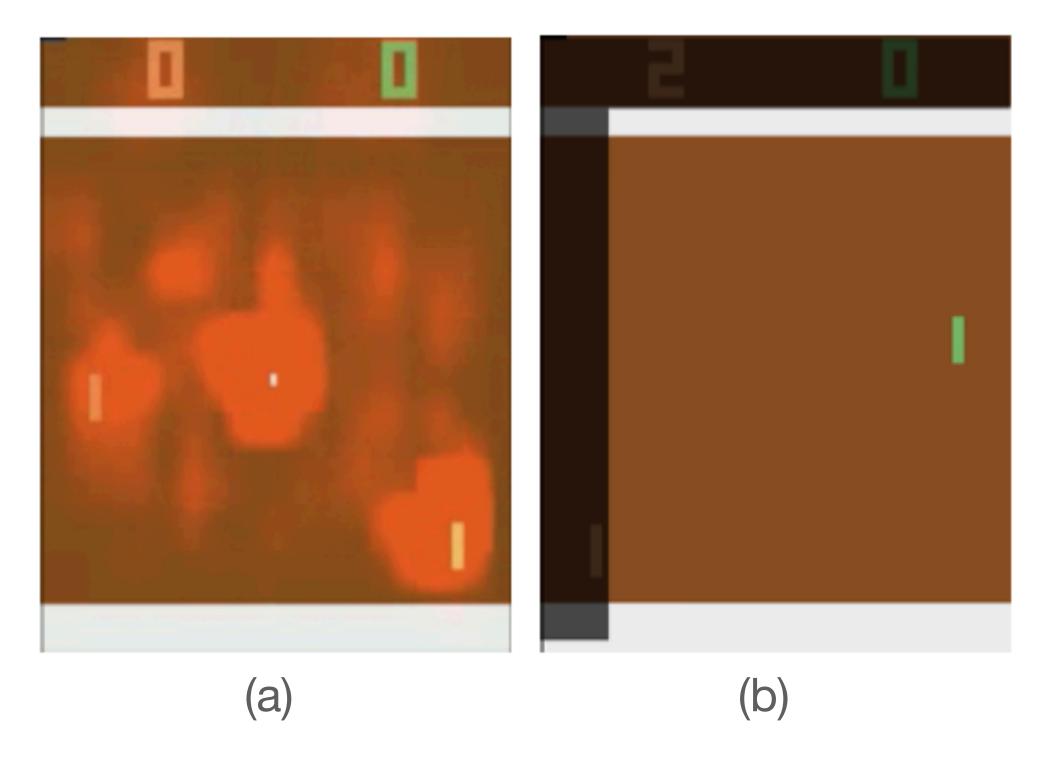
Such biases are often due to observation/action space mismatches.

Q2: How do we model it formally with causal inference tools?

Q3: How can we utilize such data for off-policy learning?

A Motivating Example - Confounded Pong

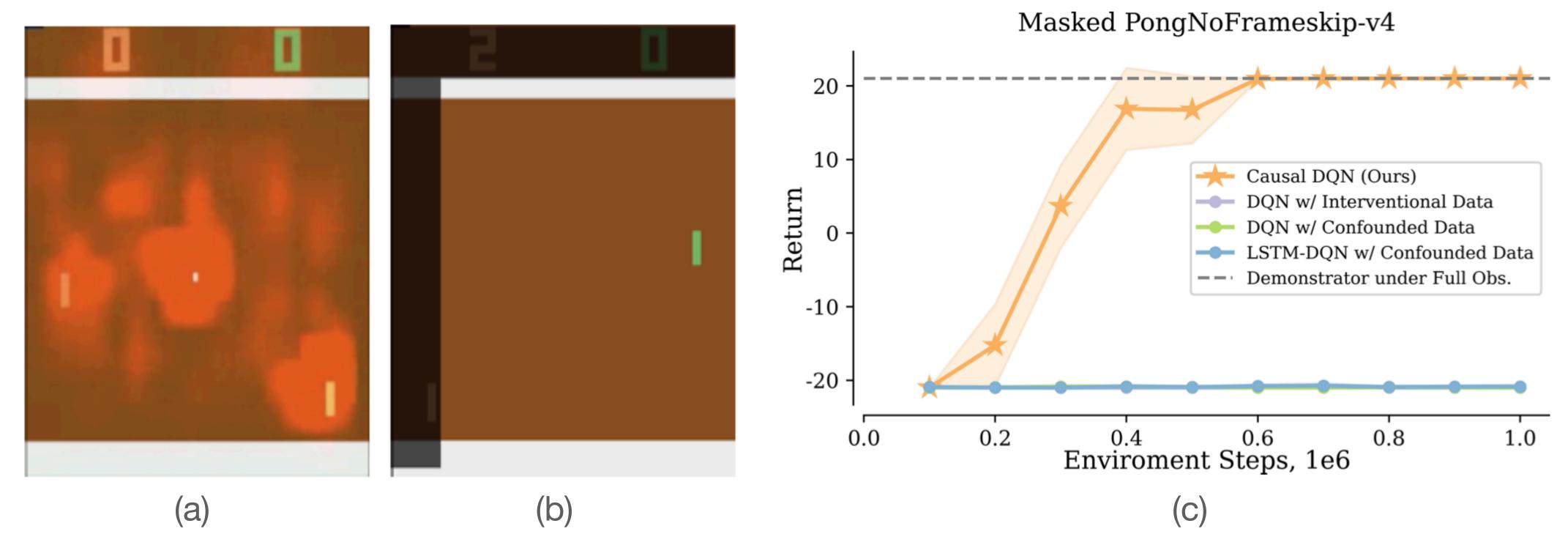
In the Pong game, score and opponent's paddle location shouldn't be a determining factor for a good human player,



(a) Saliency maps of a behavioral policy in Pong; (b) A confounded Pong game where score board and opponent's paddle location is masked.

A Motivating Example - Confounded Pong

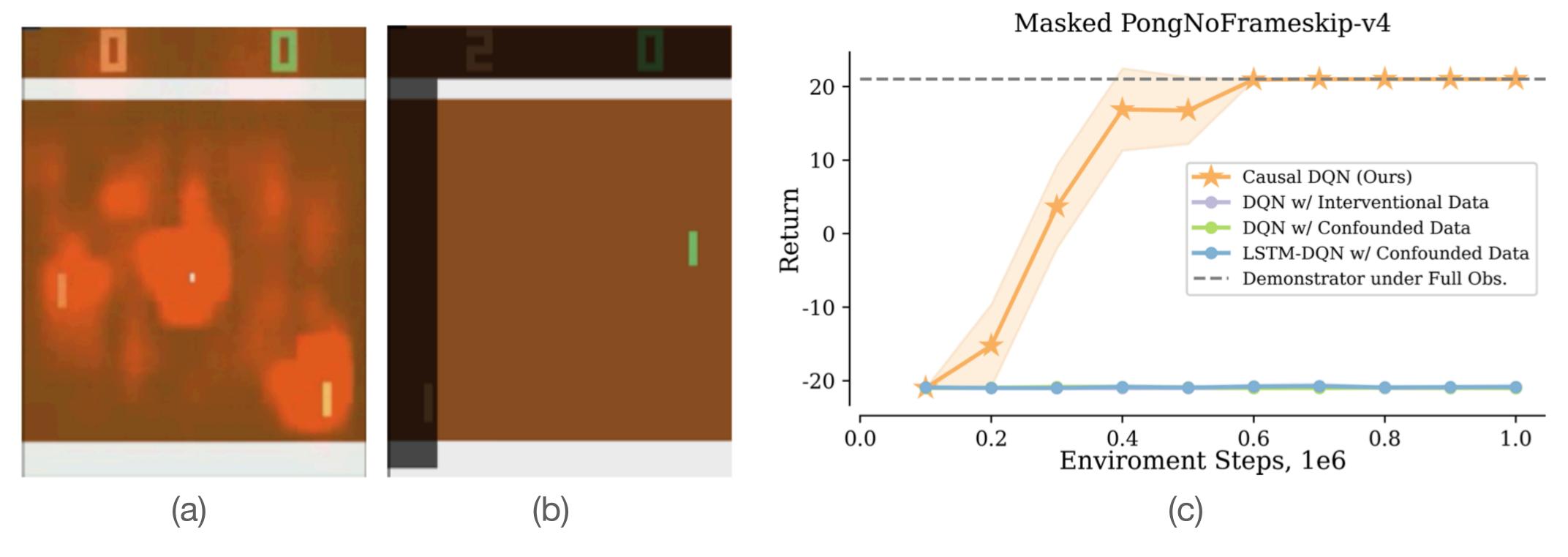
Surprisingly, all standard DQN variants failed to learn the correct policy in this confounded environment,



(a) Saliency maps of a behavioral policy in Pong; (b) A confounded Pong game where score board and opponent's paddle location is masked; (c) Evaluation performance of different DQN variants.

A Motivating Example - Confounded Pong

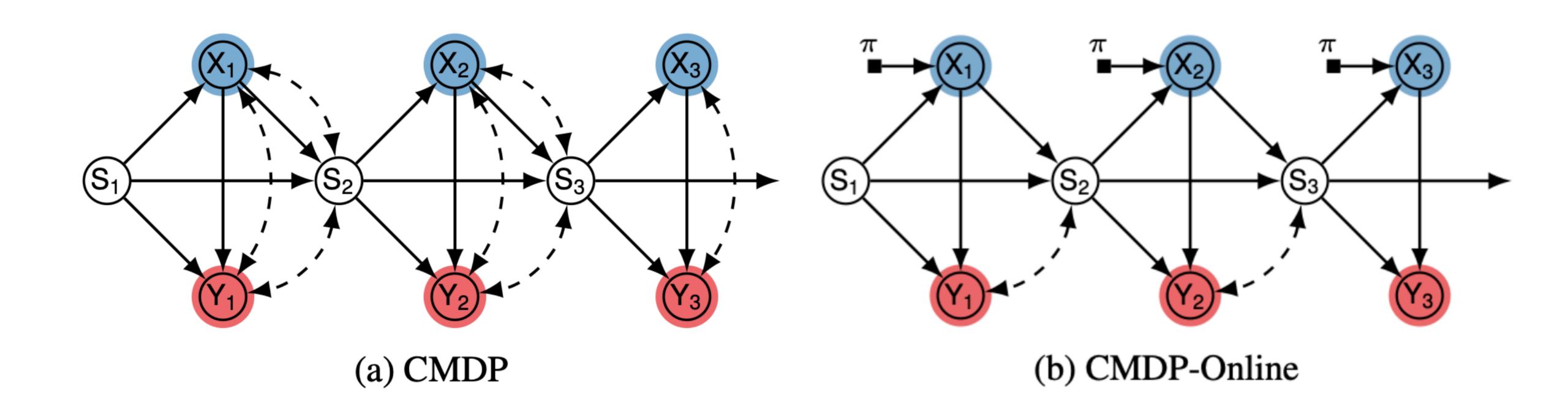
Except for Causal DQN, our solution to off-policy DRL under unobserved confounders!



(a) Saliency maps of a behavioral policy in Pong; (b) A confounded Pong game where score board and opponent's paddle location is masked; (c) Evaluation performance of different DQN variants.

Confounded MDP — A Causal Diagram View

The off-policy dataset is confounded while the online agent is interventional, i.e., loses access to those unobserved features.



Conservative Off-policy Learning via Causal Bellman Optimality Equation

Instead of directly learning unreliable Q-values from off-policy data, we use it only to lower bound the optimal Q-values,

Proposition (Causal Bellman Optimality Equation). For a CMDP environment \mathcal{M} with reward $Y_t \in [a,b] \subset \mathbb{R}$, its optimal Q-value function satisfies, $Q^*(s,x) \geq \underline{Q_*}(s,x), \forall (s,x) \in \mathcal{S} \times \mathcal{X}$, where the lower bound $\underline{Q_*}(s,x)$ is given by,

$$\underline{Q_*}(s,x) = P(x \mid s) \left(\widetilde{\mathcal{R}}(s,x) + \mathbb{E}_{\widetilde{\mathcal{T}}}[\max_{x'} \underline{Q_*}(s',x')] \right) + P(\neg x \mid s) \left(a + \min_{s'} \max_{x'} \underline{Q_*}(s',x') \right)$$

where $P(x \mid s) = P(X_t = x \mid S_t = s)$ and $P(\neg x \mid s) = 1 - P(x \mid s)$; \tilde{T}, \tilde{R} are estimated transition distribution and rewards from off-policy dataset, respectively.

Causal Deep Q-Learning

Algorithm 1 Causal Deep Q-Learning (Causal-DQN)

```
1: Initialize replay memory \mathcal{D}

2: Initialize action-value function Q_*(\cdot;\theta) with random weights \theta

3: for episodes = 1, ..., M do

4: Sample initial state s_1

5: for t = 1, ..., T do

6: Observe an action x_t taken by the demonstrator and subsequent reward y_t and state s_{t+1}

7: Store transition (s_t, x_t, y_t, s_{t+1}) in \mathcal{D}

8: Sample a minibatch of transitions \{(s_i, x_i, y_i, s_{i+1})\}_{i=1}^B from \mathcal{D}

9: Set value target w_i(x) for every action x \in \mathcal{X} w.r.t sample (s_i, x_i, y_i, s_{i+1}),
```

$$w_i(x) = \begin{cases} y_i + \gamma \max_{x'} \underline{Q_*}(s_{i+1}, x'; \theta) & \text{if } x = x_i \\ a + \gamma \min_{s'} \max_{x'} \underline{Q_*}(s', x'; \theta) & \text{if } x \neq x_i \end{cases}$$
(11)

- 10: Perform a gradient descent step on $\sum_{x} (w_i(x) \underline{Q_*}(s_i, x; \theta))^2$ according to Eq. (10) end for
- **12: end for**

Experiment Results

Our Causal DQN outperforms all baselines on 12 confounded Atari games even surpassing the demonstrator performance slightly.

Game	Demonstrator	Random	Interv. DQN	Conf. DQN	Conf. LSTM-DQN	Causal-DQN (ours)
Amidar	232.4	5.8	44.0	37.8	59.0	282.6
Asterix	3080.6	210.0	650.0	429.0	479.0	2587.0
Boxing	89.0	0.1	-0.62	-9.8	-6.9	71.5
Breakout	219.2	1.7	2.2	1.2	4.9	131.2
ChopperCommand	1280.0	811.0	1192.0	1076.0	1116.0	1658.0
Gopher	5480.6	257.6	288.8	752.0	485.6	7327.2
KungFuMaster	35400.0	258.5	12416.0	13674.0	6526.0	44196.0
MsPacman	2316.8	307.3	1191.6	881.8	787.4	1747.6
Pong	20.8	-20.7	-20.8	-20.8	-20.4	21.0
Qbert	4420.6	163.9	322.5	208.5	253.5	4458.5
RoadRunner	16560.6	11.5	1154.0	1168.0	484.0	27414.0
Seaquest	1412.4	68.4	237.2	281.6	164.8	980.0
Normalized Mean (†)	1.00	0.00	0.13	0.10	0.09	1.04
Normalized Median (†)	1.00	0.03	0.13	0.14	0.10	1.01
Normalized IQM (†)	1.00	0.03	0.13	0.13	0.11	1.02

Summary

- 1. Causal Foundations for Off-Policy RL: Introduces the Causal Bellman Equation, extending traditional RL theory to handle confounded observational data and enabling more reliable policy learning.
- 2. Causal-DQN: A novel algorithm that learns effective policies even under unobserved confounding, outperforming standard DQN across twelve confounded Atari games.
- 3. **Beyond Benchmarks:** Unobserved confounding pervades in real-world RL, spanning robotics, RLHF for LLMs, and decision-making in critical domains like healthcare & self-driving, where scaling data without causal reasoning can amplify bias and misalignment.
- 4. **Vision for Causal RL:** We envision a future of confounding-robust, causally grounded agents capable of reasoning about interventions and consequences, learning not just what works, but why it works.