

Unifying Text Semantics and Graph Structures for Temporal

Text-attributed Graphs with Large Language Models

 $Siwei\ Zhang^1 \cdot Yun\ Xiong^{1*} \cdot Yateng\ Tang^2 \cdot Jiarong\ Xu^1 \cdot Xi\ Chen^1 \cdot Zehao\ Gu^1 \cdot Xuehao\ Zheng^2 \cdot Zi'an\ Jia^1 \cdot Jiawei\ Zhang^3 \cdot Jiaho \cdot Zheng^3 \cdot Zhong^3 \cdot$ ¹Fudan University, ²Tencent Weixin Group, ³University of California, Davis

LLM4GTAug

no LLM shallow at input CROSS

Motivation

Temporal Graph Neural Networks (TGNNs)

☐ Learning time-aware node representations within temporal graphs

Temporal Text-attributed Graphs (TTAGs)

Nodes and edges are associated with text attributes

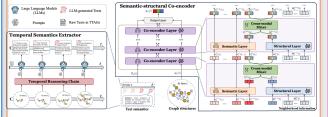
(TTAGs)

Limitations of Existing TGNNs for TTAG Modeling

- **Neglect of semantic dynamics**: failing to capture the dynamic semantic shift of nodes within TTAGs
- Ineffective encoding for semantic-structural reinforcement: solely emphasizing graph structures and overly reliant on structural dynamics

Limitations of LLM4GTAug Methods for TTAG Modeling

☐ Inability of dynamic reasoning: cannot provide semantic dynamics within the dynamic reasoning capability


Can we advance LLMs for TTAG modeling as a promising solution to the aforementioned limitations of existing TGNNs?

Framework

Key Innovation

Structural Dynamics Semantic Dynamics LLM Utilization

CROSS: a flexible LLM-based framework that unifies text semantics and graph structures for TTAG modeling

Temporal Semantics Extractor (for extracting semantic dynamics)

Temporal Reasoning Chain: sampling reasoning timestamps for LLM reasoning

LLM Summarization: extracting temporal semantics in natural

language modality with LLMs

$$\hat{d}_u(\hat{t}) = \mathtt{LLM}\left(d_u, \hat{t}, \{r_*\}_{* \in \mathcal{H}_u(\hat{t})}; \mathtt{PROMPT}\right)$$

Semantic-structural Co-encoder (to ensure unimodal reinforcement)

- Semantic Layer: encoding semantic information with Transformer
 - $\tilde{\mathbf{e}}_{u}^{(l)}(t_{1}), \dots, \tilde{\mathbf{e}}_{u}^{(l)}(t_{k}) = \mathtt{TRM}^{(l)}\left(\mathbf{e}_{u}^{(l-1)}(t_{1}), \dots, \mathbf{e}_{u}^{(l-1)}(t_{k})\right)$
- Structural Layer: aggregating structural information with TGNNs
- Cross-modal Mixer: performing hierarchical (layer-wise) modality fusion throughout the whole encoding process

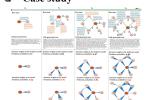
$$\mathbf{e}_{u}^{(l)}(t_{k});\;\mathbf{h}_{u}^{(l)}(t)=\mathtt{Mixer}^{(l)}\left(ilde{\mathbf{e}}_{u}^{(l)}(t_{k})\parallel ilde{\mathbf{h}}_{u}^{(l)}(t)
ight)$$

 $\tilde{\mathbf{h}}_{n}^{(l)}(t) = \text{MLP}^{(l)}\left(\mathbf{h}_{n}^{(l-1)}(t) \parallel \text{AGG}\left(\mathbf{H}_{n}^{(l)}(t)\right)\right)$

Experiments

LLM4GTAug Methods

LLM Utilization


□ Realizing SOTA performance for temporal link prediction

_	_									
	Transductive setting Enron GDELT ICEWS1819 Googlemap_C				Industrial	Enron	GDELT	Inductive setting ICEWS1819 Googlemap_CT		Industrial
JODIE	66.69 ± 2.0	48.81 ± 1.1	71.47 ± 4.0	56.72 ± 0.7	49.75 ± 1.2	53.41 ± 2.5	37.90 ± 2.4	57.75 ± 7.1	55.21 ± 1.0	30.38 ± 0.3
DyRep	58.85 ± 7.9	45.61 ± 2.8	63.13 ± 3.6	49.04 ± 2.2	36.49 ± 0.9	42.95 ± 8.3	42.23 ± 3.1	50.42 ± 2.8	47.44 ± 2.5	25.47 ± 1.3
TCL	71.16 ± 0.7	59.49 ± 0.5	87.58 ± 0.3	68.98 ± 0.4	50.87 ± 0.5	55.28 ± 1.5	47.13 ± 1.0	77.06 ± 0.2	66.26 ± 0.2	33.42 ± 0 .
CAWN	74.56 ± 0.6	57.00 ± 0.2	82.93 ± 0.1	65.34 ± 0.2	63.58 ± 0.8	61.58 ± 2.0	43.56 ± 0.6	70.65 ± 0.1	62.11 ± 0.2	53.42 ± 0 .
PINT	74.82 ± 2.8	52.71 ± 2.5	83.81 ± 0.9	72.94 ± 0.7	53.51 ± 0.6	56.38 ± 3.9	31.82 ± 4.1	63.16 ± 2.8	70.02 ± 0.6	39.72 ± 0 .
GraphMixer	62.68 ± 1.3	53.33 ± 0.4	80.69 ± 0.3	53.11 ± 0.2	50.50 ± 0.5	43.75 ± 1.5	41.18 ± 0.3	67.09 ± 0.5	51.36 ± 0.2	34.06 ± 0 .
FreeDyG	81.52 ± 1.8	68.27 ± 0.7	86.31 ± 0.6	78.82 ± 1.2	75.91 ± 0.7	70.38 ± 0.1	52.71 ± 0.3	74.16 ± 0.4	66.01 ± 2.8	56.48 ± 0 .
LKD4DyTAG	73.18 ± 0.3	57.28 ± 1.9	80.62 ± 4.2	77.11 ± 0.5	77.73 ± 0.7	67.45 ± 1.9	45.75 ± 2.0	73.81 ± 0.3	60.73 ± 1.0	57.91 ± 1
LLMzero	24.18	7.99	33.68	30.30	11.27	17.73	10.08	32.26	38.21	2.62
LLMone	46.27	28.91	50.82	48.79	30.29	48.14	28.91	44.69	43.83	20.28
TGAT	66.06 ± 0.1	56.73 ± .04	85.81 ± 0.2	63.13 ± 0.5	46.74 ± 3.9	47.80 ± 0.8	42.01 ± 0.5	74.10 ± 0.2	60.96 ± 0.2	30.04 ± 3.
TGAT+	95.58 ± 0.7	81.63 ± 1.7	93.05 ± 1.6	99.91 ± 0.0	86.97 ± 2.8	81.52 ± 2.0	64.56 ± 1.8	82.25 ± 2.0	91.59 ± 0.0	62.22 ± 2.
Avg. ↑ 26.59	† 29.52	↑ 24.90	↑ 7.24	↑ 36.78	† 40.23	↑ 33.72	† 22.55	↑ 8.15	↑ 30.63	† 32.18
TGN	73.05 ± 1.7	54.28 ± 1.6	84.79 ± 0.6	71.35 ± 0.5	54.46 ± 3.0	54.98 ± 2.3	37.48 ± 2.8	69.69 ± 0.8	67.88 ± 0.2	38.28 ± 4.
TGN+	95.84 ± 0.4	77.95 ± 2.8	94.74 ± 5.7	99.92 ± 0.0	94.26 ± 0.8	82.38 ± 1.2	56.65 ± 3.8	84.01 ± 9.2	92.68 ± 0.1	83.23 ± 2.
Avg. ↑ 25.45	↑ 22.79	† 23.67	↑ 9.95	↑ 28.57	† 39.80	† 27.40	† 19.17	† 14.32	↑ 24.80	↑ 44.0
DyGFormer	79.93 ± 0.1	61.35 ± 0.3	87.51 ± 0.3	54.82 ± 2.7	74.45 ± 0.7	66.86 ± 0.1	50.61 ± 0.2	78.14 ± 0.3	52.98 ± 2.5	54.20 ± 0
DyGFormer+	95.31 ± 2.8	81.28 ± 4.4	95.77 ± 0.3	99.82 ± 0.0	94.78 ± 1.4	86.01 ± 4.9	66.37 ± 4.4	87.80 ± 0.6	91.74 ± 0.1	82.30 ± 1
Avg. † 22.03	† 15.38	† 19.93	↑ 8.26	† 44.99	† 20.33	↑ 19.15	† 15.76	↑ 9.66	↑ 38.76	† 28.10


□ Ablation study for the texts and encoding mechanisms

	Datasets	Methods	Semantic Encoding			Structural Encoding			Semantic-structural Co-encoding		
	Datasets		Text _{raw}	Text _{LLM}	imprv.	Text _{raw}	Text _{LLM}	imprv.	Text _{raw}	Text _{LLM} (ours)	imprv.
Transductive	Enron	TGAT TGN DyGFormer	49.73 ± 0.8 49.73 ± 0.8 49.73 ± 0.8	$63.07 \pm 0.5 \\ 63.07 \pm 0.5 \\ 63.07 \pm 0.5$	† 13.34 † 13.34 † 13.34	66.06 ± 0.1 73.05 ± 1.7 79.93 ± 0.1	63.65 ± 1.7 72.36 ± 4.0 80.46 ± 0.5	↓ 2.41 ↓ 0.69 ↑ 0.53	$70.27 \pm 0.2 \\ 74.28 \pm 0.9 \\ 80.91 \pm 0.1$	95.58 ± 0.7 95.84 ± 0.4 95.31 ± 2.8	↑ 25.31 ↑ 21.56 ↑ 14.40
	ICEWS1819	TGAT TGN DyGFormer	77.45 ± 0.5 77.45 ± 0.5 77.45 ± 0.5	85.04 ± 1.5 85.04 ± 1.5 85.04 ± 1.5	↑ 7.59 ↑ 7.59 ↑ 7.59	85.81 ± 0.2 84.79 ± 0.6 87.51 ± 0.3	86.12 ± 0.1 85.69 ± 0.4 88.11 ± 0.5	↑ 0.31 ↑ 0.90 ↑ 0.60	87.33 ± 1.0 85.96 ± 0.8 86.72 ± 0.4	93.05 ± 1.6 94.74 ± 5.7 95.77 ± 0.3	↑ 5.72 ↑ 8.78 ↑ 9.05
Inductive	Enron	TGAT TGN DyGFormer	31.94 ± 0.7 31.94 ± 0.7 31.94 ± 0.7	45.24 ± 1.1 45.24 ± 1.1 45.24 ± 1.1	↑ 13.30 ↑ 13.30 ↑ 13.30	47.80 ± 0.8 54.98 ± 2.3 66.86 ± 0.1	45.01 ± 1.3 53.93 ± 4.0 67.64 ± 1.4	↓ 1.05	53.26 ± 1.0 58.92 ± 1.4 68.27 ± 0.1	81.52 ± 2.0 82.38 ± 1.2 86.01 ± 4.9	↑ 28.26 ↑ 23.46 ↑ 17.74
	ICEWS1819	TGAT TGN DyGFormer	60.63 ± 0.8 60.63 ± 0.8 60.63 ± 0.8	71.45 ± 0.6 71.45 ± 0.6 71.45 ± 0.6	↑ 10.82 ↑ 10.82 ↑ 10.82	74.10 ± 0.2 69.69 ± 0.8 78.14 ± 0.3	74.12 ± 0.2 70.39 ± 1.2 77.70 ± 0.8	† 0.70	75.19 ± 0.2 70.01 ± 0.6 79.79 ± 0.4	82.25 ± 2.0 84.01 ± 9.2 87.80 ± 0.6	↑ 7.06 ↑ 13.99 ↑ 8.01

Case study

Robustness study

Please refer to our paper for more interesting experimental results