

From Pretraining to Pathology: How Noise Leads to Catastrophic Inheritance in Medical Models

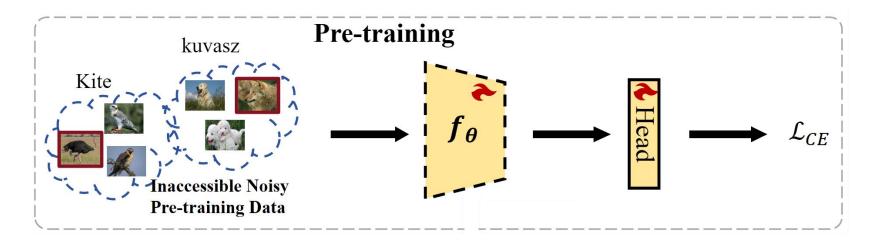
NeurIPS 2025

Hao Sun, Zhongyi Han*, Hao Chen, Jindong Wang, Xin Gao, Yilong Yin*

*corresponding author

Motivation

Catastrophic Inheritance in Medical Models.



- Does pretraining noise affect downstream medical performance?
- Why does such degradation emerge?
- How can we mitigate it efficiently without retraining the foundation model?

Influence

The label noise in pre-training induces structural degradation in downstream medical tasks.

- Controlled pre-training with varying noise ratios (0–30%) on ImageNet-1K.
- Evaluated via linear probing on Camelyon17, HAM10000, and NIH ChestXray.

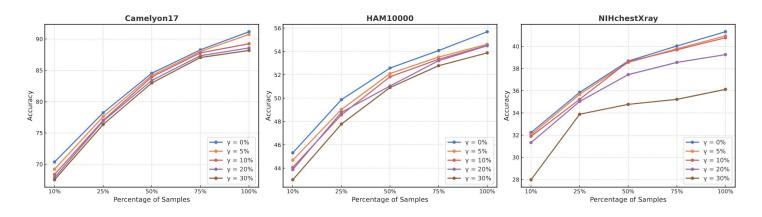


Figure 2: Average evaluation results of ImageNet-1K (IN-1K) fully supervised pre-training on downstream tasks with various percentages of data using ResNet-50. The robustness performance constantly decreases once noise is introduced in pre-training.

Analysis

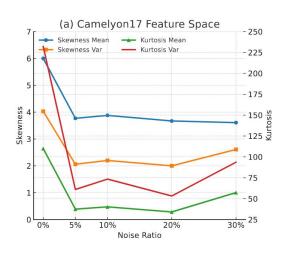
The pre-training noise flattens the representational space by reducing skewness and kurtosis.

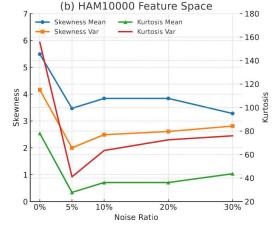
Definition 1 (Feature-wise Skewness). The skewness of feature dimension *j* is defined as:

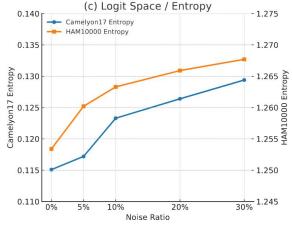
Skew(
$$F_{:,j}$$
) = $\frac{M}{(M-1)(M-2)} \sum_{i=1}^{M} (\frac{F_{i,j} - \mu_j}{\sigma_i})^3$

Definition 2 (Feature-wise Kurtosis). The kurtosis of feature dimension *j* is defined as:

$$Kurt(F_{:,j}) = \frac{M(M+1)}{(M-1)(M-2)(M-3)} \sum_{i=1}^{M} \left(\frac{F_{i,j} - \mu_j}{\sigma_j}\right)^4 - \frac{3(M-1)^2}{(M-2)(M-3)}$$

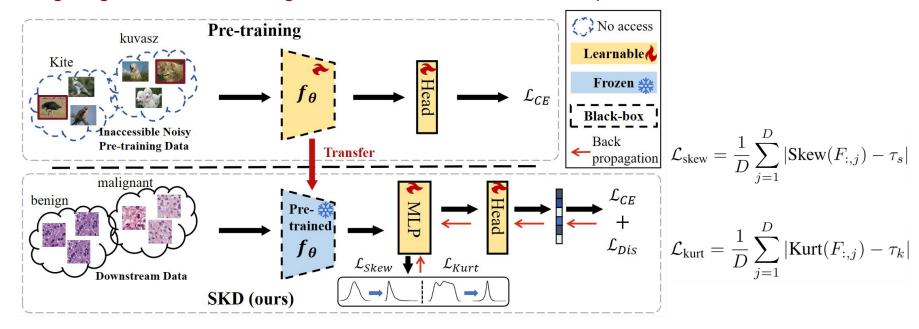






Mitigation

Mitigating the Noise with Regularization on Distributional Shape



$$\mathcal{L}_{dis}(x,y) = \frac{1}{\log 2} \log \left(1 + \exp \left(h(x)_y - \frac{1}{|\mathcal{Y}| - 1} \sum_{\hat{y} \neq y} h(x)_{\hat{y}} \right) \right)$$

Overall Objective

$$\mathcal{L} = \mathcal{L}_{\text{task}} + \lambda_s \mathcal{L}_{\text{skew}} + \lambda_k \mathcal{L}_{\text{kurt}} + \lambda_d \mathcal{L}_{\text{dis}}$$

Experiments

Main Results

Pretrained	Dataset	Method	0%	5%	10%	20%	30%	Avg Gain
CLIP		LP	83.94	81.88	81.71	81.06	80.18	-
	Camelyon17	GCE	83.12	82.74	82.21	81.57	80.68	0.31
		NML	80.61	84.21	83.32	84.68	85.61	1.93
		SKD	89.48	89.59	89.50	86.08	86.65	6.51
		LP	49.36	47.78	45.88	45.07	45.26	=
	HAM10000	GCE	50.54	48.44	47.20	45.89	45.98	0.94
		NML	50.76	51.35	49.03	52.78	50.04	4.12
		SKD	55.19	55.88	55.75	53.32	49.84	7.33
		LP	44.75	42.00	42.78	41.58	41.75	_
	ChestX-ray	GCE	45.42	42.71	43.11	42.06	42.13	0.51
		NML	36.02	35.71	35.92	36.58	37.19	-6.29
		SKD	45.92	45.81	45.48	45.45	45.86	3.13
		LP	91.16	90.73	89.24	88.57	88.18	_
ResNet50	Camelyon17	GCE	91.11	91.43	89.48	89.12	88.64	0.38
		NML	89.27	92.44	88.09	90.51	91.29	0.74
		SKD	91.76	92.50	91.39	89.12	89.02	1.18
		LP	55.69	54.62	54.52	54.49	53.88	-
	HAM10000	GCE	55.73	54.79	54.52	54.51	54.46	0.16
		NML	54.71	55.16	54.21	54.77	50.67	-0.74
		SKD	58.25	57.54	56.94	58.37	57.54	3.09
		LP	41.31	35.94	40.77	39.25	36.12	-
	ChestX-ray	GCE	41.37	36.28	41.23	40.02	36.67	0.44
		NML	38.94	36.40	36.55	37.38	38.79	-1.07
		SKD	44.81	43.37	44.22	44.25	45.39	5.73

Experiments

Real-world validation results

Table 2: Real-world evaluation on PLIP using its original medical datasets. SKD consistently outperforms baselines across F1 and accuracy.

Model	Dataset	Method	F1	Accuracy	
PLIP		Zero-Shot	0.565	=	
		LP(origin)	0.877	-	
	Kather colon	LP	0.899	0.895	
		NML	0.931	0.929	
		SKD	0.959	0.959	
		Zero-Shot	0.656	-	
		LP(origin)	0.902	-	
	PanNuke	LP	0.930	0.930	
		NML	0.948	0.948	
		SKD	0.956	0.956	
		Zero-Shot	0.832	-	
		LP(origin)	0.856	-	
	DigestPath	LP	0.968	0.968	
		NML	0.979	0.979	
		SKD	0.976	0.969	
		Zero-Shot	0.734	=	
		LP(origin)	0.927	-	
	WSSS4LUAD	LP	0.952	0.952	
		NML	0.956	0.956	
		SKD	0.958	0.958	

Table 3: Real-world evaluation on biomedical NER tasks using PubMedBERT across five datasets. SKD consistently improves both F1 and accuracy over LP and NML, demonstrating its effectiveness beyond medical imaging.

Dataset	Method	F1	Accuracy	
	LP	0.9053	0.9222	
BC2GM	NML	0.9187	0.9271	
	SKD	0.9459	0.9501	
	LP	0.9330	0.9355	
NCBI-disease-IOB	NML	0.9378	0.9402	
	SKD	0.9459	0.9471	
	LP	0.8895	0.8825	
JNLPBA	NML	0.9032	0.8957	
	SKD	0.9211	0.9128	
	LP	0.9373	0.9485	
BC4CHEMD	NML	0.9506	0.9567	
	SKD	0.9706	0.9725	
	LP	0.9286	0.9401	
BioNLP11EPI-IOB	NML	0.9362	0.9426	
	SKD	0.9481	0.9492	

TIME 机器学习与数据挖掘实验室

Q & A

Thanks! 学无止绕 包有浩然