





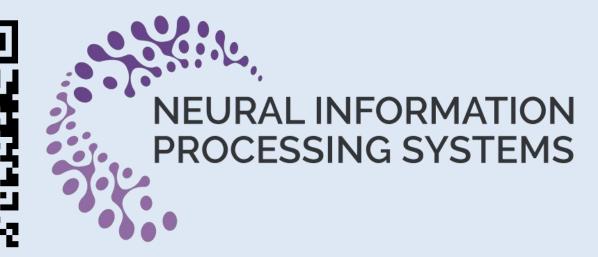
# Our Laboratory

# **Eulerian Neural Network Informed** by Chemical Transport for Air Quality Forecasting

Xukai Zhang<sup>1</sup>, Shuliang Wang<sup>1</sup>, Guangyin Jin<sup>2</sup>, Ziqiang Yuan<sup>1</sup>, Hanning Yuan<sup>1\*</sup>, Sijie Ruan<sup>1\*</sup> <sup>1</sup>Beijing Institute of Technology, <sup>2</sup>Sapienza University of Rome

{xkzhang,slwang2011,ziqiangy,yhn6,sjruan}@bit.edu.cn, jinguangyin96@gmail.com





**Code and Data** 

## Introduction

#### Background

- Accurate air quality prediction is crucial for
  - mitigating health risks
  - guiding public health
  - shaping policies
  - · enhancing environmental monitoring in smart, sustainable cities

#### **Problem Statement**

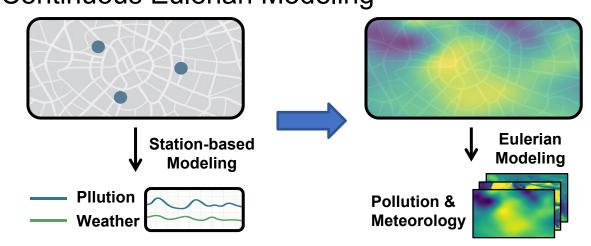
- ☐ Input:
  - ✓ Historical pollutant concentration data  $P_{1:T} \in$  $\mathbb{R}^{T \times C_P \times N}$  from N observation stations located at spatial coordinates  $S = \{(h_n, w_n)\}_{n=1}^N$
  - ✓ Continuous meteorological data  $M_{1:T} \in \mathbb{R}^{T \times C_M \times H \times W}$ , where  $C_M$  denotes the number of channels, including wind components as well as other meteorological variables
- □ Output:
  - ✓ The pollutant concentrations at all station locations over the future time period from T + 1 to  $T + \tau$ , denoted by  $\hat{P}_{T+1:T+\tau}$
- ☐ Task:

 $\checkmark$  To learn the function  $\mathcal{F}$ :

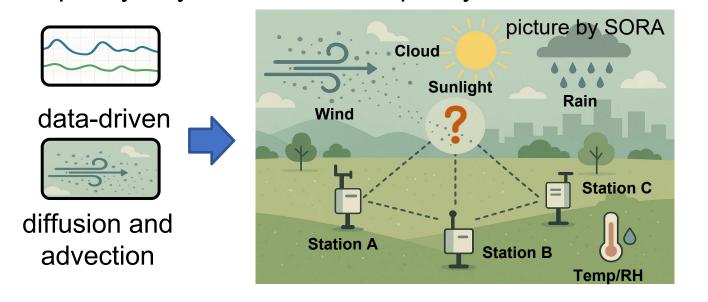
$$\hat{P}_{T+1:T+\tau} = \mathcal{F}(P_{1:T}, M_{1:T}), \; \hat{P}_{T+1:T+\tau} \in \mathbb{R}^{\tau \times C_P \times N}$$

#### Challenge and Contribution

- 1 Data Representation
  - **→** Traditional Discrete Modeling
  - Multivariate time series / Spatial-temporal graph
  - Ignoring spatial continuity
  - **→** Our Eulerian Modeling
  - Continuous Eulerian Modeling

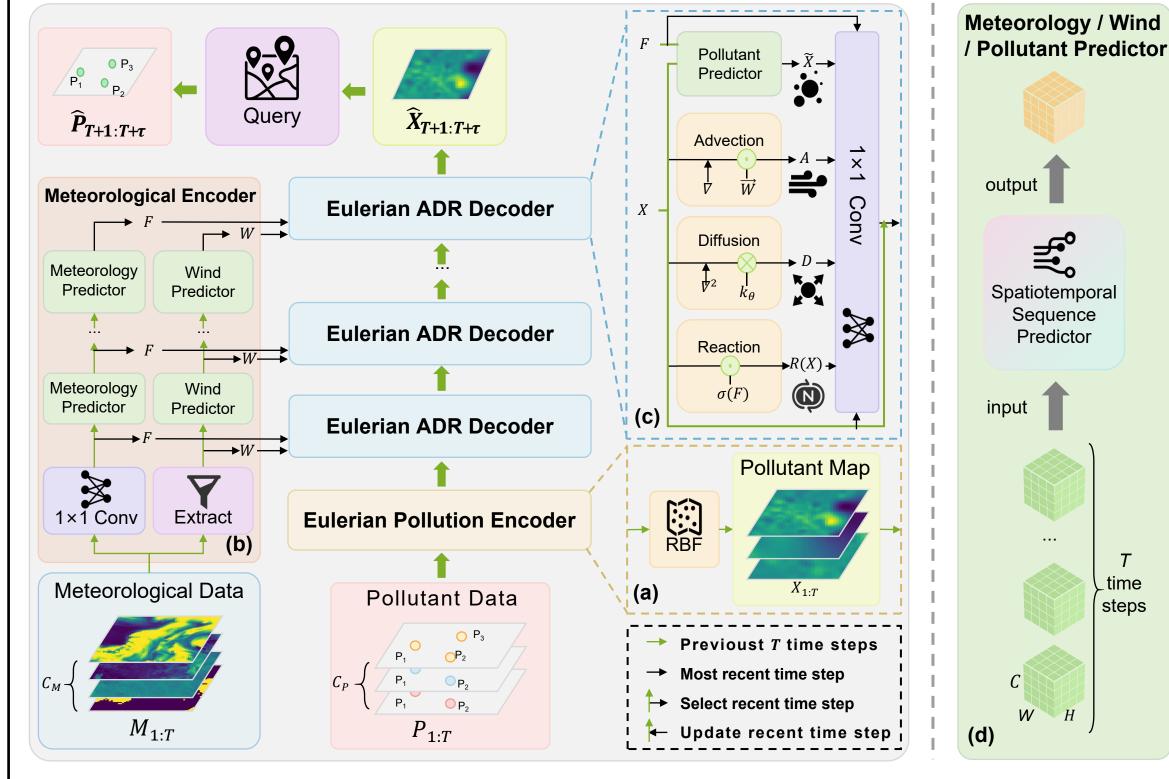


- (2) Evolutionary Mechanism
  - **→** Traditional Drivers
  - Purely data-driven / only physical drivers
  - Ignoring secondary pollutant generation (e.g., photochemistry)
  - **♦** Our Physicochemical Driver
  - Explicitly Physical-Driven + Implicitly Chemical-Driven



# Methodology

#### Structure of our propossed CTENet



# output Spatiotempora Sequence Predictor

(a) Eulerian Pollution Encoder employs RBF interpolation to construct smooth pollutant fields from discrete observations, preserving spatial gradients and variability.

$$rbf(\mathbf{x}) = \sum_{i=1}^{n_t} \lambda_i^{(t)} \phi\left(\left\|\mathbf{x} - \mathbf{x}_i^{(t)}\right\|\right), \ t \in \{1, \dots, T\}$$

#### (b) Meteorological Encoder performs two tasks in parallel:

- Extracts the wind channels
- Utilizes a 1x1 convolution to obtain meteorological features

Then, Wind Predictor and Meteorology Predictor are used to forecast future wind fields.

#### (d) ST Sequence Predictor

Although the Wind, Meteorology, and Pollutant Predictors serve different functions, their inputs and outputs all share the same dimensions: (T, C, H, W). The framework features a replaceable Spatiotemporal Sequence Predictor function, allowing for easy plug-andplay integration of models such as ConvLSTM[1], depending on the specific requirements.

Kingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, nowcasting. Advances in neural information processing systems 28, 2015

#### (c) Eulerian ADR Decoder

attempts to embed Chemical Transport Modeling (CTM) into neural networks, specifically represented by the following ADR equation:

$$\frac{\partial X}{\partial t} + \underbrace{\overrightarrow{W} \cdot \nabla X}_{Advection} = \underbrace{k_{\theta} \cdot \nabla^{2} X}_{Diffusion} + \underbrace{R(X)}_{Reaction} + \underbrace{S}_{Source}$$

We numerically discretize the equation and incorporate the results as independent channels into the pollutant predictor.

### **Evaluation**

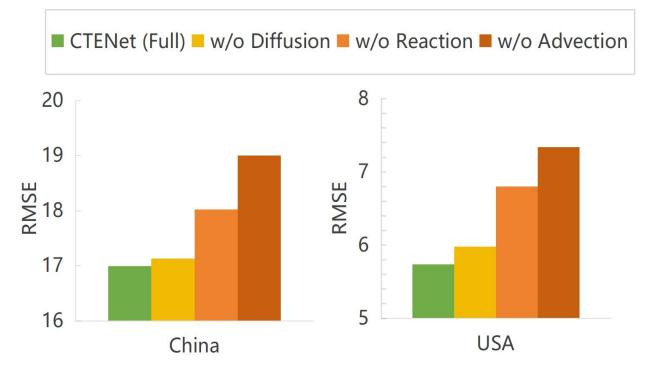
#### Performance

RMSE improvement: 45.8%(USA) and 21.0%(China)

| Methods            | USA Data |             |       |             |       |             | China Data |             |       |             |       |       |
|--------------------|----------|-------------|-------|-------------|-------|-------------|------------|-------------|-------|-------------|-------|-------|
|                    | 24h      |             | 48h   |             | 72h   |             | 24h        |             | 48h   |             | 72h   |       |
|                    | MAE      | <b>RMSE</b> | MAE   | <b>RMSE</b> | MAE   | <b>RMSE</b> | MAE        | <b>RMSE</b> | MAE   | <b>RMSE</b> | MAE   | RMSE  |
| HA                 | 5.30     | 11.57       | 5.66  | 12.54       | 5.99  | 13.23       | 21.64      | 38.03       | 22.76 | 39.12       | 23.58 | 40.03 |
| VAR                | 6.32     | 14.41       | 5.78  | 12.74       | 5.76  | 12.94       | 24.74      | 39.85       | 25.43 | 41.85       | 26.66 | 44.14 |
| STGCN              | 4.29     | 9.03        | 4.51  | 9.03        | 4.63  | 9.08        | 31.43      | 43.72       | 31.91 | 44.06       | 32.69 | 44.75 |
| DCRNN              | 5.40     | 14.50       | 5.42  | 12.81       | 5.38  | 13.48       | 28.14      | 49.81       | 27.45 | 47.36       | 27.39 | 47.63 |
| GTS                | 5.57     | 14.65       | 5.60  | 14.32       | 5.61  | 14.18       | 23.46      | 41.70       | 23.50 | 42.53       | 23.85 | 44.41 |
| AirFormer          | 4.05     | 10.44       | 4.40  | 10.74       | 4.60  | 10.89       | 19.09      | 36.08       | 20.89 | 38.42       | 21.85 | 39.61 |
| AirPhyNet          | 4.47     | 11.36       | 4.79  | 11.40       | 4.94  | 11.48       | 18.75      | 36.35       | 19.97 | 37.16       | 20.74 | 37.64 |
| $PM_{2.5}$ -GNN    | 4.38     | 9.77        | 4.63  | 9.66        | 4.76  | 9.63        | 17.71      | 33.25       | 19.12 | 34.16       | 19.73 | 34.53 |
| TAU                | 4.71     | 12.51       | 4.94  | 13.56       | 5.22  | 13.90       | 15.85      | 26.80       | 15.43 | 27.35       | 15.60 | 26.85 |
| CTENet w/ ConvLSTM | 4.12     | 8.46        | 4.31  | 8.66        | 4.43  | 8.84        | 13.79      | 23.14       | 14.44 | 23.79       | 15.28 | 24.47 |
| CTENet w/ TAU      | 2.66     | 4.86        | 2.99  | 4.86        | 3.10  | 5.00        | 10.90      | 16.99       | 13.28 | 22.60       | 15.92 | 26.74 |
| % Best Improvement | 34.43    | 46.02       | 32.06 | 46.18       | 32.68 | 44.86       | 31.24      | 36.60       | 13.97 | 17.36       | 2.04  | 8.86  |

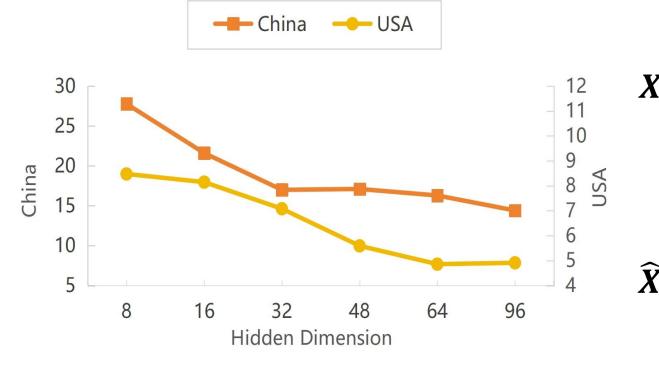
## Ablation Study

Effectiveness of the ADR terms



# **Hidden Dimension Analysis**

Model complexity and stability



#### Case Study

Capture of Dynamic Pollutant Advection

