Sample Complexity of Distributionally Robust Average-Reward Reinforcement Learning

Zijun Chen¹ Shengbo Wang² Nian Si³

Department of Computer Science and Engineering, HKUST
 Daniel J. Epstein Department of Industrial and Systems Engineering, USC
 Department of Industrial Engineering and Decision Analytics, HKUST

November 5, 2025

Distributionally Robust Reinforcement Learning (DR-RL)

Given a Markov Decision Process (MDP) with nominal kernel P, the agent in DR-RL aims to maximize the **long-term** reward in uncertainty set \mathcal{P}

$$g_{\mathcal{P}}^{\pi}(s) := \inf_{Q \in \mathcal{P}} \limsup_{T \to \infty} \frac{1}{T} E_{Q}^{\pi} [\sum_{t=0}^{T} r(S_{t}, A_{t}) | S_{0} = s]$$
$$g_{\mathcal{P}}^{*}(s) := \max_{\pi \in \Pi} g_{\mathcal{P}}^{\pi}(s)$$

Distributionally Robust Reinforcement Learning (DR-RL)

Given a Markov Decision Process (MDP) with nominal kernel P, the agent in DR-RL aims to maximize the **long-term** reward in uncertainty set \mathcal{P}

$$g_{\mathcal{P}}^{\pi}(s) := \inf_{Q \in \mathcal{P}} \limsup_{T \to \infty} \frac{1}{T} E_{Q}^{\pi} \left[\sum_{t=0}^{T} r(S_{t}, A_{t}) | S_{0} = s \right]$$
$$g_{\mathcal{P}}^{*}(s) := \max_{\pi \in \Pi} g_{\mathcal{P}}^{\pi}(s)$$

where \mathcal{P} is the *uncertainty set* of candidate transition kernel for MDPs, constructed as a δ -ball centered as P

$$\mathcal{P}_{s,a}(D,\delta) = \{p : D(p||p_{s,a}) \le \delta\} \quad \mathcal{P} = \times_{(s,a)} \mathcal{P}_{s,a}$$

Distributionally Robust Reinforcement Learning (DR-RL)

Given a Markov Decision Process (MDP) with nominal kernel P, the agent in DR-RL aims to maximize the **long-term** reward in uncertainty set \mathcal{P}

$$g_{\mathcal{P}}^{\pi}(s) := \inf_{Q \in \mathcal{P}} \limsup_{T \to \infty} \frac{1}{T} E_{Q}^{\pi} \left[\sum_{t=0}^{T} r(S_{t}, A_{t}) | S_{0} = s \right]$$
$$g_{\mathcal{P}}^{*}(s) := \max_{\pi \in \Pi} g_{\mathcal{P}}^{\pi}(s)$$

where $\mathcal P$ is the *uncertainty set* of candidate transition kernel for MDPs, constructed as a δ -ball centered as P

$$\mathcal{P}_{s,a}(D,\delta) = \{p : D(p||p_{s,a}) \le \delta\} \quad \mathcal{P} = \times_{(s,a)} \mathcal{P}_{s,a}$$

Objective: find optimal policy π^* and average-reward function $g_{\mathcal{P}}^*$ such that $g_{\mathcal{P}}^{\pi^*}(s) = g_{\mathcal{P}}^*$ for all $s \in \mathbf{S}$

Bellman optimality

It is shown that optimal average-reward function $g_{\mathcal{P}}^*$ satisfies the Robust Bellman equation:

Theorem 1 (Wang et al., 2023)

If $\mathcal P$ is uniformly ergodic with a uniformly bounded minorization time, then $g_{\mathcal P}^*(s)\equiv g_{\mathcal P}^*$ is a constant, and there exists a solution (g,v) of

$$v(s) = \max_{a \in A} \{ r(s, a) + \inf_{q \in \mathcal{P}_{s, a}} q[v] \} - g$$

such solution satisfies $g(s) = g_{\mathcal{P}}^*$. And policy

$$\pi(s) \in \arg\max_{a \in A} \{r(s,a) + \inf_{q \in \mathcal{P}_{s,a}} q[v]\}$$

is optimal.

DR-AMDP Algorithms

- Step 1: Draw n samples for each (s,a) pair to compute empirical kernel \widehat{P}
- Step 2: Compute empirical uncertainty set $\widehat{\mathcal{P}}$ centered at \widehat{P}

Reduction to DMDP & Anchored AMDP

- Step 1: Draw n samples for each (s,a) pair to compute empirical kernel \widehat{P}
- Step 2: Compute empirical uncertainty set $\widehat{\mathcal{P}}$ centered at \widehat{P}
- Step 3:
 - Reduction to DMDP: Solve Robust Discounted Bellman equation

$$V_{\widehat{\mathcal{P}}}^*(s) = \max_{a \in A} \{ r(s, a) + \gamma \inf_{q \in \widehat{\mathcal{P}}_{s, a}} q[V_{\widehat{\mathcal{P}}}^*] \}$$

with
$$\gamma = 1 - 1/\sqrt{n}$$

• Anchored AMDP: Solve Robust Average Bellman equation

$$v_{\widehat{\underline{\mathcal{P}}}}^*(s) = \max_{a \in A} \{ r(s, a) + \inf_{q \in \mathcal{P}_{s, a}} q[v_{\widehat{\underline{\mathcal{P}}}}^*] \} - g_{\widehat{\underline{\mathcal{P}}}}^*$$

where

$$\widehat{\underline{\mathcal{P}}}_{s,a} = \{(1 - \frac{1}{\sqrt{n}})q + \frac{1}{\sqrt{n}}\mathbf{1}e_{s_0}^\top, q \in \widehat{\mathcal{P}}\}$$

• Step 4: Extract $\widehat{\pi}^*$, $V_{\widehat{\mathcal{P}}}^*/\sqrt{n}$, $g_{\widehat{\mathcal{P}}}^*$

Main Contribution: DR-DMDP

DR-DMDP

The solution $V^*_{\widehat{\mathcal{D}}}$ to empirical Bellman equation

$$V_{\widehat{\mathcal{P}}}^*(s) = \max_{a \in A} \{ r(s, a) + \gamma \inf_{q \in \mathcal{P}_{s, a}} q[V_{\widehat{\mathcal{P}}}^*] \}$$

satisfies:

$$||V_{\widehat{\mathcal{P}}}^* - V_{\mathcal{P}}^*||_{\infty} = \widetilde{O}\left(\frac{t_{min}}{(1 - \gamma)\sqrt{np_{\wedge}}}\right)$$

This improves the horizon dependence from $(1-\gamma)^{-2}$ (Shi and Chi, 2024; Wang et al., 2024) to $(1-\gamma)^{-1}$

 p_{\wedge} : minimal support probability

 t_{min} : minorization time of nominal kernel

Main Contribution: DR-AMDP

DR-AMDP

Reduction to DMDP & Anchored AMDP are **priori knowledge-free** algorithm that learn approximate optimal policy and average reward with error

$$0 \leq \underbrace{g_{\mathcal{P}}^{\widehat{\pi}^*} - g_{\mathcal{P}}^*}_{\text{policy error}}, \underbrace{\left\|\frac{V_{\widehat{\mathcal{P}}}^*}{\sqrt{n}} - g_{\mathcal{P}}^*\right\|_{\infty}}_{\text{Reduction to DMDP}}, \underbrace{\left\|g_{\widehat{\mathcal{P}}}^* - g_{\mathcal{P}}^*\right\|_{\infty}}_{\text{Anchored AMDP}} = O\left(\frac{t_{min}}{\sqrt{np_{\wedge}}}\sqrt{\log(\frac{|S|^2|A|}{\beta})}\right)$$

i.e., DR-AMDP achieves ε -optimality with $\widetilde{O}(\frac{t_{min}^2}{p_\wedge \varepsilon^2})$ samples.

Main Technique used

- Challenge 1: Minorization time could be unbounded over \mathcal{P} -issued by making constraints on uncertainty size δ
 - When $\mathcal{P}=\mathcal{P}(D_{KL},\delta)$, $\delta \leq \frac{1}{8m_{\vee}^2}p_{\wedge}$
 - When $\mathcal{P} = \mathcal{P}(D_{f_k}, \delta)$, $\delta \leq \frac{1}{\max\{8, 4k\}m_{\vee}^2} p_{\wedge}$

Then

$$\sup_{Q \in \mathcal{P}, \pi \in \Pi} t_{min}(Q_{\pi}) = O(t_{min}) \quad t_{min} := \max_{\pi \in \Pi} t_{min}(P_{\pi})$$

Main Technique used

Challenge 2: Sub-optimal rate for DR-DMDP-issued by dual form

$$\inf_{q \in \mathcal{P}_{s,a}(D_{KL},\delta)} q[V] = \sup_{\alpha \ge} \{-\alpha \delta - \alpha \log p_{s,a}[e^{-V/\alpha}]\}$$

$$\inf_{q \in \mathcal{P}_{s,a}(D_{f_k},\delta)} q[V] = \sup_{\alpha \in \mathbb{R}} \{\alpha - c_k(\delta)p_{s,a}[(\alpha - V)_+^{k^*}]^{1/k^*}\}$$

The empirical error:

$$\|\inf_{q\in\widehat{\mathcal{P}}_{s,a}}q[V] - \inf_{q\in\mathcal{P}_{s,a}}q[V]\|_{\infty} = \widetilde{O}\left(\frac{Span(V)}{\sqrt{np_{\wedge}}}\right) = \widetilde{O}\left(\frac{t_{min}}{\sqrt{np_{\wedge}}}\right)$$

With this result, we show:

$$||V_{\widehat{\mathcal{P}}}^* - V_{\mathcal{P}}^*||_{\infty} = \widetilde{O}\left(\frac{t_{min}}{(1 - \gamma)\sqrt{np_{\wedge}}}\right)$$

improves the horizon dependence from $(1-\gamma)^{-2}$ (Shi and Chi, 2024; Wang et al., 2024) to $(1-\gamma)^{-1}$

Experiment

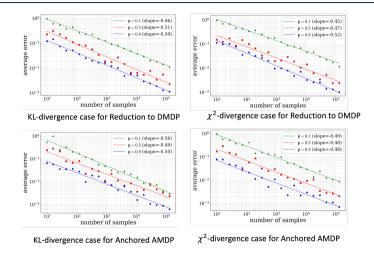


Figure: Reduction to DMDP & Anchored AMDP performance on hard MDP instance under KL-divergence and χ^2 -divergence.

12 / 14

Thank You!

References

- Shi, L. and Chi, Y. (2024). Distributionally robust model-based offline reinforcement learning with near-optimal sample complexity. *Journal of Machine Learning Research*, 25(200):1–91.
- Wang, S., Si, N., Blanchet, J., and Zhou, Z. (2024). Sample complexity of variance-reduced distributionally robust q-learning. *Journal of Machine Learning Research*, 25(341):1–77.
- Wang, Y., Velasquez, A., Atia, G., Prater-Bennette, A., and Zou, S. (2023). Robust average-reward markov decision processes. *Proceedings of the AAAI Conference on Artificial Intelligence*, 37(12):15215–15223.