

PARCO:

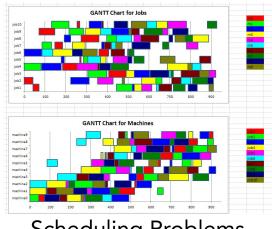
Parallel AutoRegressive Models for Multi-Agent Combinatorial Optimization

Federico Berto*, Chuanbo Hua*, Laurin Luttmann*, Jiwoo Son, Junyoung Park, Kyuree Ahn, Changhyun Kwon, Lin Xie, Jinkyoo Park

Combinatorial Optimization (CO)

Goal 6: finding an optimal set of actions from a finite set of discrete objects

Routing Problems



Scheduling Problems

The logistics industry is worth over 10 Trillion USD! (Statista, 2025)

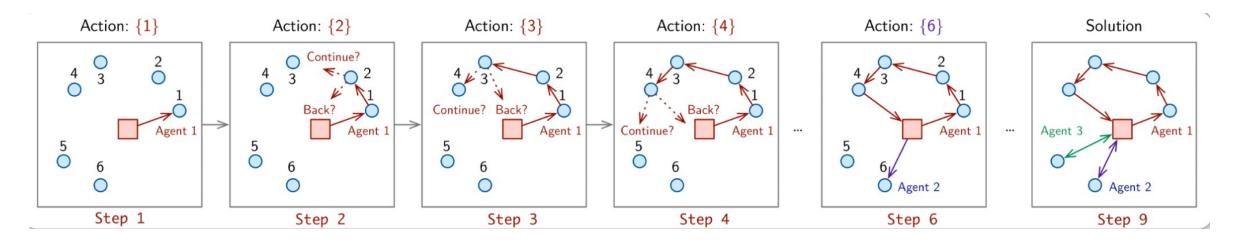
Problem: CO is NP-hard!

Solution: Reinforcement Learning (RL)

- Better solutions than traditional methods
- Fast and scalable solvers
- Less or no reliance on manual design

Problem: Multi-Agent CO

Most current approaches to Multi-Agent CO decode solutions AutoRegressively (AR), one agent at a time:

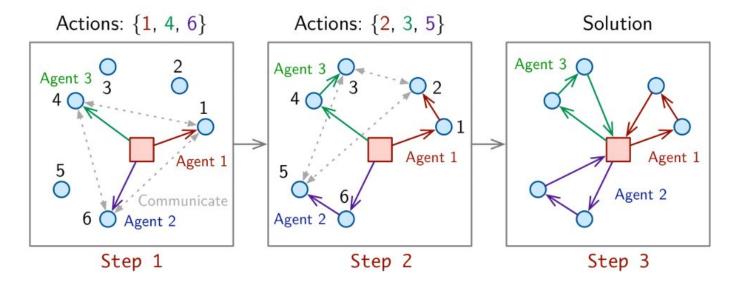


This results in:

- 1. Ineffective coordination :(
- 2. Slow decoding speed :(

Solution: PARCO

We propose <u>Parallel</u> AutoRegressive Combinatorial Optimization. We can decode in parallel for the different agents and have them communicate for each step:



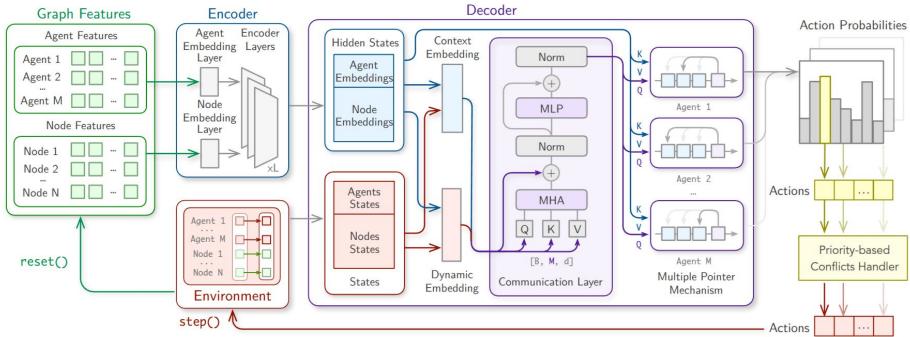
This results in:

- ★ Effective coordination
- ★ Fast decoding speed

PARCO Model

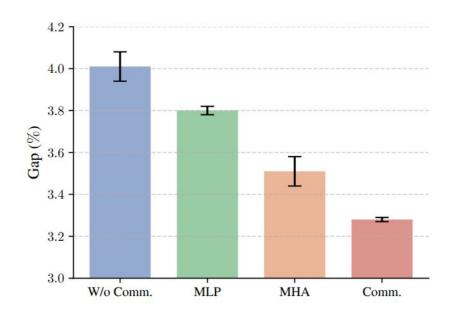
We propose:

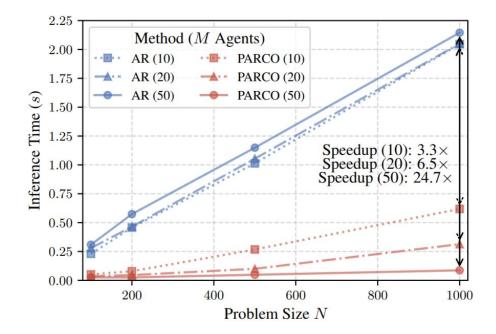
- 1. <u>Communication Layers</u> for effective coordination
- 2. <u>Multiple Pointer Mechanism</u> for parallel decoding
 - a. What if agents select the same action? \rightarrow We propose a <u>Priority-based Conflict</u> <u>Handler</u> based on confidence for tie-breaking



Results

★ SOTA results among neural solvers and vs traditional methods on ¾ tasks (2x routing: HCVRP, OMDCPDP; 1x scheduling: FFSP)





★ Parallel enables much better performance (more agents -> more speedup!)

Results: scaling & generalization

★ PARCO can generalize to large-scale pickup-and-delivery problems with 50× larger number of nodes and agents than seen during training

Table 7: Large-scale generalization results for OMDCPDP with N=5000.

1.	M = 500			M = 750			M = 1,000		
	Obj.	Gap	Time	Obj.	Gap	Time	Obj.	Gap	Time
OR-Tools	5575.73	134.06%	3600s	5127.46	115.24%	3600s	4974.81	188.10%	3600s
HAM	4813.99	102.08%	17.4s	3732.06	97.33%	19.5s	3258.26	88.69%	22.3s
PARCO	2382.22	0.0%	0.21s	1891.28	0.0%	0.21s	1726.78	0.0%	0.22s

→ SOTA results at 10,000x speedup compared to Google's OR-Tools!

Thank you!

