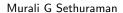
Differentiable Cyclic Causal Discovery Under Unmeasured Confounders



Faramarz Fekri

School of Electrical & Computer Engineering Georgia Institute of Technology

Georgia Institute of Technology

Based on work supported by

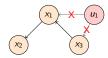
 Causal understanding of real-world systems is crucial for prediction under unseen perturbations

- Causal understanding of real-world systems is crucial for prediction under unseen perturbations
- ▶ With a few notable exceptions, most existing work rely on the following assumptions which are often violated in practice:

Acyclicity: No directed cycles

- Causal understanding of real-world systems is crucial for prediction under unseen perturbations
- ▶ With a few notable exceptions, most existing work rely on the following assumptions which are often violated in practice:

Acyclicity: No directed cycles



Causal sufficiency: No unmeasured confounders

- Causal understanding of real-world systems is crucial for prediction under unseen perturbations
- ▶ With a few notable exceptions, most existing work rely on the following assumptions which are often violated in practice:

Acyclicity: No directed cycles

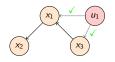
Causal sufficiency: No unmeasured confounders

Assumptions simplify search space; Often unrealistic in practice

Contributions

▶ DCCD-CONF: novel differentiable causal discovery framework that handles feedback loops, nonlinearity, and hidden confounding

Feedback loops

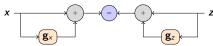


Hidden confounders

Contributions

► DCCD-CONF: novel differentiable causal discovery framework that handles feedback loops, nonlinearity, and hidden confounding

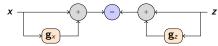
► DCCD-CONF performs maximum likelihood-based graph recovery utilizing implicit normalizing flows



Contributions

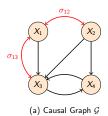
▶ DCCD-CONF: novel differentiable causal discovery framework that handles feedback loops, nonlinearity, and hidden confounding

► DCCD-CONF performs maximum likelihood-based graph recovery utilizing implicit normalizing flows



We show consistency in infinite sample regime, and showcase its practical use through synthetic and real-world experiments

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{B})$ represent a (possibly) cyclic *Directed Mixed Graph* (DMG)



Let $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{B})$ represent a (possibly) cyclic *Directed Mixed Graph* (DMG)

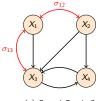
Structural Equations Model

Let Z_i 's denote the exogenous variables. Then,

$$X_i = F_i(\mathbf{X}_{pa_G(i)}, Z_i), \quad i = 1, \ldots, d.$$

$$\begin{split} X_i &= F_i(\boldsymbol{X}_{\text{pa}_{\mathcal{G}}(i)}, Z_i), \quad i = 1, \dots, d. \\ \boldsymbol{Z} &= (Z_1, \dots, Z_d) \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Sigma}_{\mathcal{Z}}), \ (\boldsymbol{\Sigma}_{\mathcal{Z}})_{ij} \neq 0 \Rightarrow i \leftrightarrow j. \end{split}$$

Vectorization: X = F(X, Z)



Let $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{B})$ represent a (possibly) cyclic *Directed Mixed Graph* (DMG)

Structural Equations Model

Let Z_i 's denote the exogenous variables. Then,

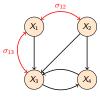
$$X_i = F_i(\mathbf{X}_{pa_G(i)}, Z_i), \quad i = 1, \ldots, d.$$

$$\begin{split} X_i &= F_i(\boldsymbol{X}_{\text{pa}_{\mathcal{G}}(i)}, Z_i), \quad i = 1, \dots, d. \\ \boldsymbol{Z} &= (Z_1, \dots, Z_d) \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Sigma}_{\mathcal{Z}}), \, (\boldsymbol{\Sigma}_{\mathcal{Z}})_{ij} \neq 0 \Rightarrow i \leftrightarrow j. \end{split}$$

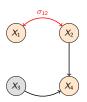
Vectorization: X = F(X, Z)

Interventions

Hard interventions. All incoming edges to intervened nodes are removed. $\mathbf{U} \in \mathbb{R}^{d \times d}$ interventional mask matrix, then: X = UF(X, Z) + C



(a) Causal Graph G



(b) Intervention on X₃

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{B})$ represent a (possibly) cyclic *Directed Mixed Graph* (DMG)

Structural Equations Model

Let Z_i 's denote the exogenous variables. Then,

$$X_i = F_i(\mathbf{X}_{pa_G(i)}, Z_i), \quad i = 1, \ldots, d.$$

$$\mathbf{Z} = (Z_1, \ldots, Z_d) \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_{\mathbf{Z}}), (\mathbf{\Sigma}_{\mathbf{Z}})_{ij} \neq 0 \Rightarrow i \leftrightarrow j.$$

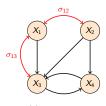
Vectorization: $\mathbf{X} = \mathbf{F}(\mathbf{X}, \mathbf{Z})$

Interventions

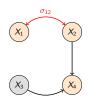
Hard interventions. All incoming edges to intervened nodes are removed. $\mathbf{U} \in \mathbb{R}^{d \times d}$ interventional mask matrix, then: $\mathbf{X} = \mathbf{UF}(\mathbf{X}, \mathbf{Z}) + \mathbf{C}$

Let $\mathbf{f}_{\mathbf{x}}^{(I)}: \mathbf{X} \mapsto \mathbf{Z}$ be *forward map* under intervention, $\mathcal{U} = \mathcal{V} \setminus I$. The data likelihood is given by

$$p_{\mathsf{do}(I)(\mathcal{G})}(\boldsymbol{X}) = p_I(\boldsymbol{C})p_Z\Big(\big[\boldsymbol{f}_x^{(I)}(\boldsymbol{X})\big]_{\mathcal{U}}\Big) \big|\det\big(\boldsymbol{J}_{\boldsymbol{f}_x^{(I)}}(\boldsymbol{X})\big)\big|,$$



(a) Causal Graph $\mathcal G$



(b) Intervention on X_3

Objective Function

Given interventions $\mathcal{I}=\{I_k\}_{k\in[K]}$, we would like to learn the SEM by maximizing regularized log-data likelihood:

$$\mathcal{S}_{\mathcal{I}}(\mathcal{G}) := \sup_{m{ heta}, m{\Sigma}_{\mathcal{I}}} \sum_{k=1}^K \mathbb{E}_{m{X} \sim p^{(k)}} \log p_{\mathsf{do}(I_k)(\mathcal{G})}(m{X}) - \lambda \|\mathcal{G}\|_1.$$

Three main challenges:

- 1. Modeling the causal mechanism
- 2. Computing Log-determinant of the Jacobian
- 3. Updating the model parameters

Objective Function

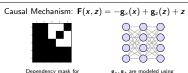
Given interventions $\mathcal{I}=\{I_k\}_{k\in[K]}$, we would like to learn the SEM by maximizing regularized log-data likelihood:

$$\mathcal{S}_{\mathcal{I}}(\mathcal{G}) := \sup_{oldsymbol{ heta}, oldsymbol{\Sigma}_{\mathcal{I}}} \sum_{k=1}^K \mathop{\mathbb{E}}_{oldsymbol{X} \sim p^{(k)}} \log p_{\mathsf{do}(l_k)(\mathcal{G})}(oldsymbol{X}) - \lambda \|\mathcal{G}\|_1.$$

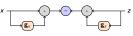
Three main challenges:

- 1. Modeling the causal mechanism
- 2. Computing Log-determinant of the Jacobian
- 3. Updating the model parameters

Modeling Causal Mechanism



graph adjacency
The SEM forms an implicit layer



contractive NN

Objective Function

Given interventions $\mathcal{I}=\{l_k\}_{k\in[K]}$, we would like to learn the SEM by maximizing regularized log-data likelihood:

$$\mathcal{S}_{\mathcal{I}}(\mathcal{G}) := \sup_{\boldsymbol{\theta}, \boldsymbol{\Sigma}_{\mathcal{Z}}} \sum_{k=1}^K \sum_{\boldsymbol{X} \sim p^{(k)}} \log p_{\text{do}(I_k)(\mathcal{G})}(\boldsymbol{X}) - \lambda \|\mathcal{G}\|_1.$$

Three main challenges:

- 1. Modeling the causal mechanism
- 2. Computing Log-determinant of the Jacobian
- 3. Updating the model parameters

Computing Log-det-Jacobian

Computing Log-det-Jacobian naively - $O(d^3)$

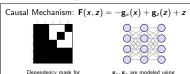
Power series expansion of log $\big|\det\big(\mathbf{J}_{\mathbf{f}_{k}^{(l_{k})}}(\boldsymbol{X})\big)\big|$ utilizing $\mathrm{Tr}\big(\mathbf{J}_{\mathbf{f}^{(l_{k})}}^{m}(\boldsymbol{X})\big)$ - $O(d^{2})$

Hutchinson Trace Estimator (even more reduction)

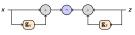
$$Tr{A} = \mathbb{E}_{W}[W^{\top}AW],$$

where $\mathbb{E} \mathbf{W} = 0$, and $\mathbb{E} \mathbf{W}^2 = 1$.

Modeling Causal Mechanism



graph adjacency
The SEM forms an implicit layer



contractive NN

Objective Function

Given interventions $\mathcal{I}=\{l_k\}_{k\in[K]}$, we would like to learn the SEM by maximizing regularized log-data likelihood:

$$\mathcal{S}_{\mathcal{I}}(\mathcal{G}) := \sup_{\boldsymbol{\theta}, \boldsymbol{\Sigma}_{\mathcal{I}}} \sum_{k=1}^K \sum_{\boldsymbol{X} \sim p^{(k)}} \log p_{\mathsf{do}(I_k)(\mathcal{G})}(\boldsymbol{X}) - \lambda \|\mathcal{G}\|_1.$$

Three main challenges:

- 1. Modeling the causal mechanism
- 2. Computing Log-determinant of the Jacobian
- 3. Updating the model parameters

Computing Log-det-Jacobian

Computing Log-det-Jacobian naively - $O(d^3)$

Power series expansion of $\log \left| \det \left(\mathbf{J}_{\mathbf{f}_k^{(l_k)}}(\boldsymbol{X}) \right) \right|$ utilizing $\mathrm{Tr}(\mathbf{J}_{\epsilon^{(l_k)}}^m(\boldsymbol{X}))$ - $O(d^2)$

Hutchinson Trace Estimator (even more reduction)

$$Tr{A} = \mathbb{E}_{W}[W^{\top}AW],$$

where $\mathbb{E}\boldsymbol{W}=0$, and $\mathbb{E}\boldsymbol{W}^2=1$.

Modeling Causal Mechanism

Dependency mask for graph adjacency g_x, g_z are modeled using contractive NN

The SEM forms an implicit layer

Parameter Update

NN and graph parameters: Using *implicit function* theorem, gradients can be efficiently backpropagated

Exogenous noise covariance: Let $z^{(i)} = f_x(x^{(i)})$, and **S** be the sample covariance of **Z**. Σ_Z is obtained by solving the following convex problem:

$$\tilde{\mathcal{L}}(I_k) = \sup_{\Sigma_Z} - \text{Tr}(\mathbf{S}\Sigma_Z^{-1}) - \log |\Sigma_Z|,$$

which can be solved one column at a time as a series of LASSO regressions.

Results

Theorem. Let $\mathcal{I} = \{I_k\}_{k=1}^K$ be a family of interventional targets, let \mathcal{G}^* denote the ground truth directed mixed graph, let $p^{(k)}$ denote the data generating distribution for I_k , and $\hat{\mathcal{G}} := \arg\max_{\mathcal{G}} \mathcal{S}(\mathcal{G})$. Then, under suitable assumptions and a suitably chosen $\lambda > 0$, we have that $\hat{\mathcal{G}}$ is \mathcal{I} -Markov equivalent to \mathcal{G}^* .

¹Frangieh, C., et al. "Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion."

Results

Theorem. Let $\mathcal{I} = \{I_k\}_{k=1}^K$ be a family of interventional targets, let \mathcal{G}^* denote the ground truth directed mixed graph, let $p^{(k)}$ denote the data generating distribution for I_k , and $\hat{\mathcal{G}} := \arg\max_{\mathcal{G}} \mathcal{S}(\mathcal{G})$. Then, under suitable assumptions and a suitably chosen $\lambda > 0$, we have that $\hat{\mathcal{G}}$ is \mathcal{I} -Markov equivalent to \mathcal{G}^* .

Gene regulatory network: Data was taken from Frangieh et al (2021)¹. Contains gene expressions taken from 218,331. Choose 61 genes from around 20,000.

Table: Performance comparison with respect to I-NLL

Method	Control	Co-Culture	IFN- γ
DCCD-CONF	1.375 (0.103)	1.245 (0.039)	1.235 (0.338)
NODAGS	1.465 (0.015)	1.406 (0.012)	1.504 (0.009)
LLC	1.385 (0.039)	1.325 (0.029)	1.430 (0.048)
DCDI	1.523 (0.036)	1.367 (0.018)	1.517 (0.041)

¹Frangieh, C., et al. "Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion."

Results - Ablation Study

Synthetic Experiments: All experiments were performed on d=10 node graphs. DCCD-CONF was compared with NODAGS-Flow, LLC, DAGMA, DCD

