RoPECraft: Training-Free Motion Transfer with Trajectory-Guided RoPE Optimization on Diffusion Transformers

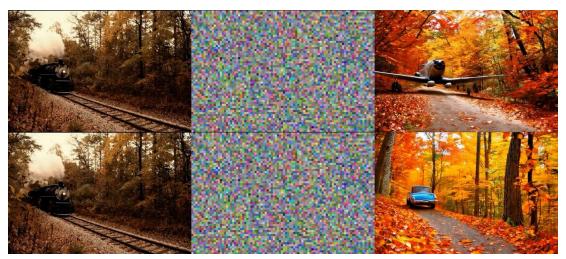
Ahmet Berke Gokmen*, Yigit Ekin*, Bahri Batuhan Bilecen*, Aysegul Dundar

*: equal contribution

Noise warping

How I Warped Your Noise ICLR 2024 Oral, ETHZ

Leverages generative **image diffusion models** for
consistent video generation
via noise warping



Go-with-the-Flow, CVPR 2025 Oral, Netflix

EquiVDM, 2025, NVIDIA

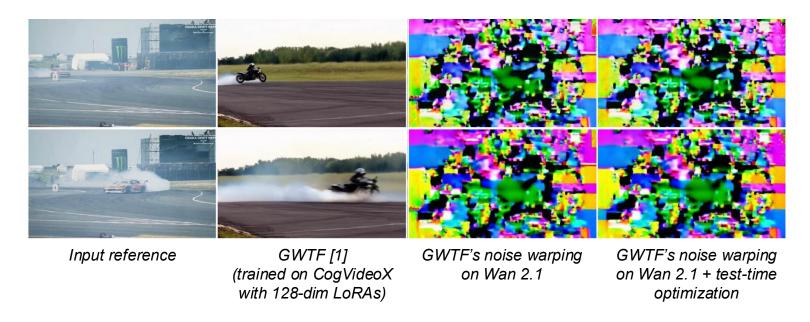
Fine-tune the model to understand warped noise behavior

Used for controllable generation in general

EquiVDM

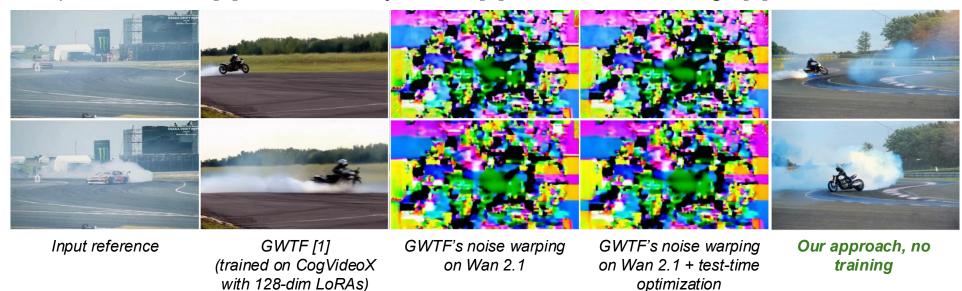
A problem with noise warping

- Noise warping changes the latent space. This means the network needs fine-tuning & retraining. For GWTF[1], takes 40-GPU days of fine-tuning on pre-trained CogVideoX!
- If we utilize the same noise warping algorithm on other backbones (like Wan), it collapses
- Test-time optimization does not recover the sample, either

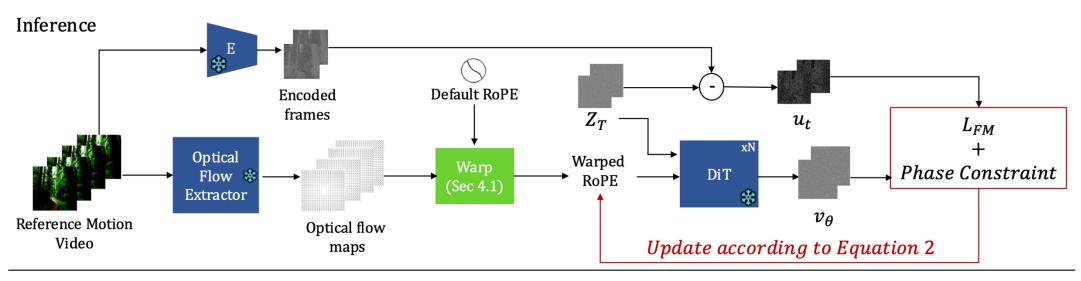


Our approach: RoPE warping

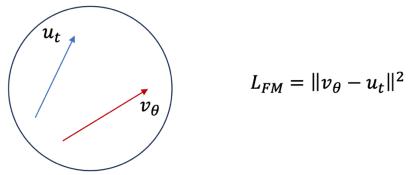
- Rather than noise warping, we explore rotary positional embedding (RoPE) warping on motion transfer tasks [RoPECraft, NeurlPS 2025]
- This does not require any training and can work on any video diffusion backbone!
- We are the first ones exploring RoPE warping on video models. Similartly, later works also explored video super-resolution [2], novel-view synthesis [3], camera embeddings [4], etc.



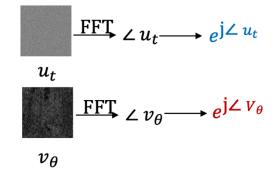
Pipeline

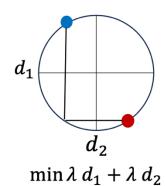






Phase constraint (Sec 4.3)





RoPE in video models

Algorithm 1 Default 1D RoPE, expanded to 3D

```
1: Input: Base frequency \theta \in \mathbb{R}_{>0}
 2: Embedding dims D_t, D_h, D_w \in \mathbb{N}
  3: Sequence lengths S_t, S_h, S_w \in \mathbb{N}
 4: for each k \in \{t, h, w\} do
              \mathbf{p} = [0, 1, \dots, S_k - 1]^{\mathrm{T}}
                                                                                            \triangleright \in \mathbb{R}^{S_k}
               \mathbf{d} = [0, 1, \dots, D_k/2 - 1]^{\mathrm{T}}
              \mathbf{f} = \theta^{-2\mathbf{d}/D_k}
               \mathbf{\Phi}_k = \overline{e^{j\mathbf{pf}^{\mathrm{T}}}}
               oldsymbol{\Phi}_k = \operatorname{expand}(oldsymbol{\Phi}_k) \;\; 	riangleright \in \mathbb{C}^{S_t 	imes S_h 	imes S_w 	imes (D_k/2)}
10: end for
                                                              \triangleright \in \mathbb{C}^{S_t \times S_h \times S_w \times (D/2)}
11: \Phi = \operatorname{concat}(\Phi_{t,h,w})
                                                      \triangleright \in \mathbb{C}^{1 \times 1 \times (S_t S_h S_w) \times (D/2)}
```

12: $\Phi = \text{flatten}(\Phi)$

$$< q\Phi_a, k\Phi_b > = Re(qk^T \cdot e^{j(a-b)f}) = qk^T \cos((a-b)f)$$

In attention maps qk^T , the value is **scaled** by the relative position between (a - b)

Embeddings are calculated for (t,h,w) dimensions for 1D, and expanded (broadcasted) for the other 2 dims

This means as t changes, we still have the same (h,w) embeddings.

The network understands this (because trained with it), but we can also manipulate it to our advantage to encourage a controllable generation

1) RoPE warping

10: **end for**

11: $\Phi = \operatorname{concat}(\Phi_{t,h,w})$

12: $\Phi = \text{flatten}(\Phi)$

Algorithm 1 Default 1D RoPE, expanded to 3D

```
1: Input: Base frequency \theta \in \mathbb{R}_{>0}
2: Embedding dims D_t, D_h, D_w \in \mathbb{N}
3: Sequence lengths S_t, S_h, S_w \in \mathbb{N}
4: for each k \in \{t, h, w\} do
           \mathbf{p} = [0, 1, \dots, S_k - 1]^{\mathrm{T}}
           \mathbf{d} = [0, 1, \dots, D_k/2 - 1]^{\mathrm{T}}
                                                                            \triangleright \in \mathbb{R}^{D_k/2}
           \mathbf{f} = \theta^{-2\mathbf{d}/D_k}
                                                                   \triangleright \in \mathbb{C}^{S_k \times (D_k/2)}
           \mathbf{\Phi}_k = e^{j\mathbf{pf}^{\mathrm{T}}}
            oldsymbol{\Phi}_k = 	extstyle{	extstyle expand}(oldsymbol{\Phi}_k) \;\; 	extstyle \in \mathbb{C}^{S_t 	imes ar{S}_h 	imes ar{S}_w 	imes (D_k/2)}
```

 $\triangleright \in \mathbb{C}^{S_t \times S_h \times S_w \times (D/2)}$

 $\triangleright \in \mathbb{C}^{1 \times 1 \times (S_t S_h S_w) \times (D/2)}$

Algorithm 2 Motion-augmented RoPE

8: $\mathbf{w}_{\text{flow}} = \text{flatten}(\mathbf{w}_{\text{flow}})$

```
1: Input: Base frequency \theta \in \mathbb{R}_{>0},
2: Embedding dims D_t, D_h, D_w \in \mathbb{N}
3: Sequence lengths S_t, S_h, S_w \in \mathbb{N}
                                                                           \triangleright \in \mathbb{R}^{2 \times S_t \times H \times W}
4: Optical flows u, v
                                                                        \triangleright \in \mathbb{R}^{2 \times S_t \times S_h \times S_w}
5: \mathbf{u}, \mathbf{v} = \text{downsample}(\mathbf{u}, \mathbf{v})
6: \mathbf{h}_{\text{flow}}, \mathbf{w}_{\text{flow}} = \text{cumsum}(\mathbf{u}, \mathbf{v})
                                                                           \triangleright \in \mathbb{R}^{(S_t \times S_w) \times S_h}
7: \mathbf{h}_{\text{flow}} = \texttt{flatten}(\mathbf{h}_{\text{flow}})
                                                                           \triangleright \in \mathbb{R}^{(S_t \times S_h) \times S_w}
```

9:
$$\mathbf{f}_{h} = \theta^{-2[0,1,\dots,D_{h}/2-1]^{T}/D_{h}} \qquad \triangleright \in \mathbb{R}^{D_{h}/2}$$
10:
$$\mathbf{for} \operatorname{each} r \operatorname{in} [0,1,\dots,S_{t} \times S_{w}] \operatorname{do}$$

$$\mathbf{p} = [0,1,\dots,S_{h}-1]^{T} + \mathbf{h}_{\operatorname{flow}}[r] \qquad \triangleright \in \mathbb{R}^{S_{h}}$$

$$\mathbf{p} \in \mathbb{R}^{D_{k}/2} \qquad 12: \qquad \mathbf{p} = [0,1,\dots,S_{h}-1]^{T} + \mathbf{h}_{\operatorname{flow}}[r] \qquad \triangleright \in \mathbb{R}^{S_{h}}$$

$$\mathbf{p} \in \mathbb{R}^{D_{k}/2} \qquad 13: \qquad \mathbf{p} \in \mathbb{R}^{D_{k}/2} \qquad 13: \qquad \mathbf{p} \in \mathbb{R}^{D_{k}/2}$$

$$\mathbf{p} \in \mathbb{R}^{D_{k}/2} \qquad 13: \qquad \mathbf{p} \in \mathbb{R}^{D_{k}/2} \qquad \mathbf{p} \in \mathbb{R}^{D_{k}/2}$$

$$\mathbf{p} \in \mathbb{R}^{D_{k}/2} \qquad \mathbf{p} \in \mathbb{R}^{D_{k}/2} \qquad \mathbf{p} \in \mathbb{R}^{D_{k}/2}$$

$$\mathbf{p} \in \mathbb{R}^{D_{k}/2} \qquad \mathbf{p} \in \mathbb{R}^{D_{k}/2} \qquad \mathbf{p} \in \mathbb{R}^{D_{k}/2}$$

$$\mathbf{p} \in \mathbb{R}^{D_{k}/2} \qquad \mathbf{p} \in \mathbb{R}^{D_{k}/2} \qquad \mathbf{p} \in \mathbb{R}^{D_{k}/2}$$

15:
$$\mathbf{f}_{w} = \theta^{-2[0,1,...,D_{w}/2-1]^{T}/D_{w}}$$

16: **for** each c in $[0,1,...,S_{t} \times S_{k}]$ **do**

17: $\mathbf{p} = [0,1,...,S_{w}-1]^{T} + \mathbf{w}_{flow}[c]$

18: $\mathbf{\Phi}_{w}[c] = e^{j\mathbf{pf}_{w}^{T}}$

19: **end for**

20: $\mathbf{\Phi}_{w} = \mathbf{reorder}(\mathbf{\Phi}_{w})$

21:
$$\mathbf{p} = [0, \dots, S_t - 1]^T$$

22: $\mathbf{f} = \theta^{-2[0, \dots, D_t/2 - 1]^T/D_t}$
23: $\mathbf{\Phi}_t = \operatorname{expand}(e^{j\mathbf{p}\mathbf{f}^T})$

24:
$$\Phi = \text{flatten}(\text{concat}(\Phi_{t,h,w}))$$

Let us not broadcast to (h,w) dimensions, but offset them based on the optical flow cues

For instance, the network behaves as if the upper-left indexed patch is changing its location, as time goes on

1) RoPE warping

Visualization of warped RoPE

Prompt: A

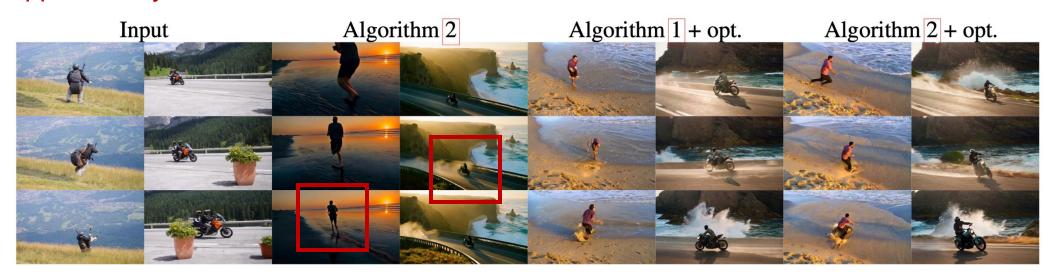
helicopter

taking off

Source Generated with warped **RoPE** Default **RoPE** Warped **RoPE** Time

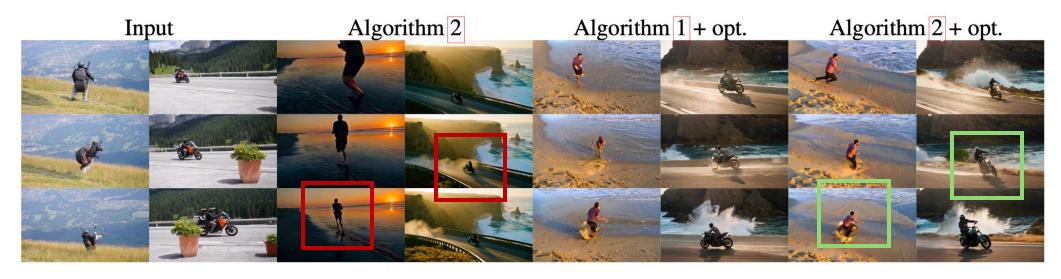
2) Per-sample optimization on top of warping

 Even though RoPE warping is sufficient, in some cases, subjects may be oriented in the opposite way



2) Per-sample optimization on top of warping

 Even though RoPE warping is sufficient, in some cases, subjects may be oriented in the opposite way



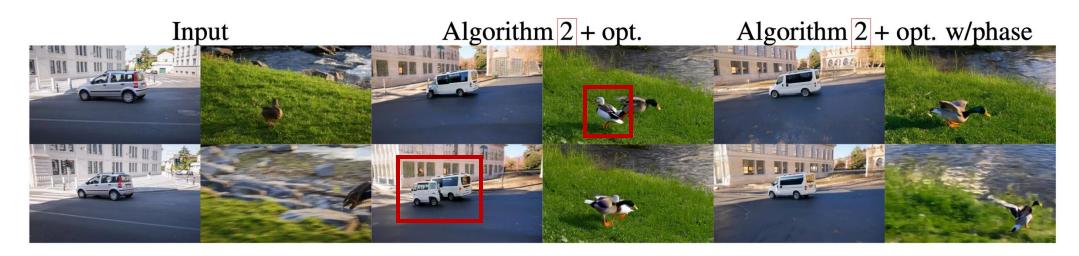
- To refine it, we align the generated velocity in early generation steps (cos-sim) $v_{\theta}(t, x_t)$, with the target velocity $u_t = \sigma_t^{-1}(x_t v)$, where:
 - v_{θ} is the DiT output
 - x_t is the input latent at timestep t
 - v is the clear latent reference video
 - σ_t is the schedular sigma at timestep t

$$Loss = \mathcal{L}_{FM}(u_t, v_\theta) = cossim(u_t, v_\theta)$$

3) Phase constraints

 After RoPE warping, some RoPE tensors may be aliased (meaning that not in the correct frequency range), which may cause feature copying

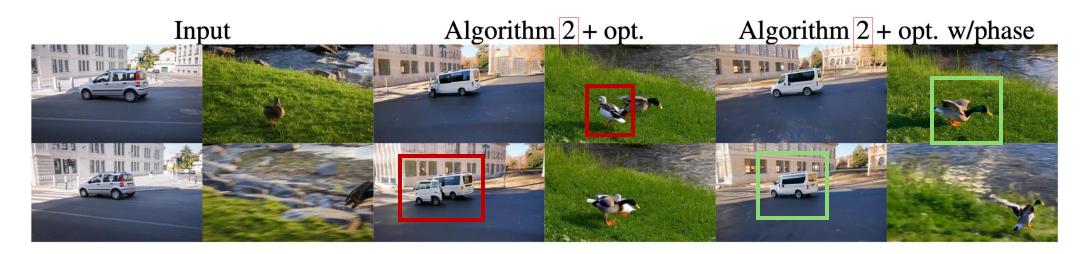
3) Phase constraints



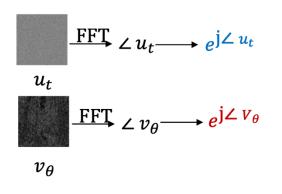
- After RoPE warping, some RoPE tensors may be aliased (meaning that not in the correct frequency range), which may cause feature copying
- We got inspired by Fourier domain properties, namely the shift (a shift in spatial domain is identical to a phase scaling)

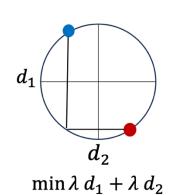
$$f(x-a,y-b) \Leftrightarrow e^{j2\pi(au+bv)}F(u,v)$$

3) Phase constraints



• Therefore, we also added a Fourier phase constraint between generated velocity and the target velocity, to eliminate the unwanted copying:





$$\begin{aligned} Loss &= \mathcal{L}_{FM}(u_t, v_\theta) \\ + \lambda \big| |cos \angle F(u_t) - cos \angle F(v_\theta)| \big| \\ + \lambda \big| |sin \angle F(u_t) - sin \angle F(v_\theta)| \big| \end{aligned}$$

Fréchet Trajectory Distance

Figure 8: **Fréchet Trajectory Distance (FTD). 1)** Sample n foreground (**red**) and n background (**green**) seeds on the first frame. **2)** Track each seed with an occlusion-aware filler: copy the nearest visible neighbor while occluded and discard tracks that never re-appear. **3)** Measure the RMS Fréchet distance between generated (**fake**) and reference (**real**) tracks.

- We also propose Fréchet Trajectory Distance, where we assign random trajectories and compute the Fréchet distance between them
- We show that it is more reliable than Motion Fidelity [Yatim et al., CVPR 2024] for motion transfer tasks

$$D_F(\mathcal{T}_i^{\text{real}}, \mathcal{T}_i^{\text{fake}}) = \min_{\sigma, \tau: \{1, \dots, L\} \to \{1, \dots, T\}} \max_{k=1, \dots, L} \left\| \mathbf{x}_{i, \sigma(k)}^{\text{real}} - \mathbf{x}_{i, \tau(k)}^{\text{fake}} \right\|_2,$$

$$FTD = (N^{-1} \sum_{i=1}^{N} D_F^2(\mathcal{T}_i^{\text{real}}, \mathcal{T}_i^{\text{fake}}))^{0.5}$$

Table 1: Comparison of motion transfer methods across evaluation metrics. Best and second results are represented with *italic* and <u>underlined</u>, respectively.

Method	MF ↑	CD-FVD↓	CLIP↑	FTD (FG) \downarrow	FTD (FG+BG) ↓
GWTF [4]	0.5713 ± 0.22	1485.23	0.2378 ± 0.04	0.2457 ± 0.14	0.2308 ± 0.10
SMM [45]	$\overline{0.4889 \pm 0.20}$	1600.33	0.2331 ± 0.04	0.2882 ± 0.15	0.3176 ± 0.15
MOFT [42]	0.4606 ± 0.20	1630.45	0.2311 ± 0.04	0.2811 ± 0.16	0.3057 ± 0.14
DitFlow (latents) [31]	0.4832 ± 0.20	1735.49	0.2339 ± 0.04	0.2921 ± 0.15	0.3135 ± 0.12
DitFlow (RoPE) [31]	0.4500 ± 0.18	1852.90	0.2345 ± 0.04	0.2785 ± 0.14	0.3019 ± 0.13
ConMo [14]	0.4627 ± 0.21	1680.78	0.2309 ± 0.04	0.2769 ± 0.15	0.3040 ± 0.14
Ours	0.5816±0.19	1284.58	0.2350 ± 0.04	0.2644 ± 0.14	0.2584 ± 0.13

Table 2: Ablation on motion-augmented RoPE and phase constraints.

Method	MF	CLIP	FTD
Alg.1 + opt.	0.7082	0.1560	0.2174
Alg.2 + opt.	0.7092	0.1650	0.2105
Alg.2 + opt. + phase	<i>0.7210</i>	0.1656	0.2060

Table 3: Ablation on hyperparameters.

(t,s)	MF	CD-FVD	CLIP	FTD
		1437.99		
5, 10	0.5523	1606.88	0.1663	0.2728
		1364.25		
10, 10	0.6160	1492.86	0.1572	0.2573

- Noise warping is also too strict in terms of obeying the object shape, and cannot adapt to the text prompt
 well
- We developed our method on Wan2.1-1.3B T2V and one-shot tested on CogVideoX-5B T2V:

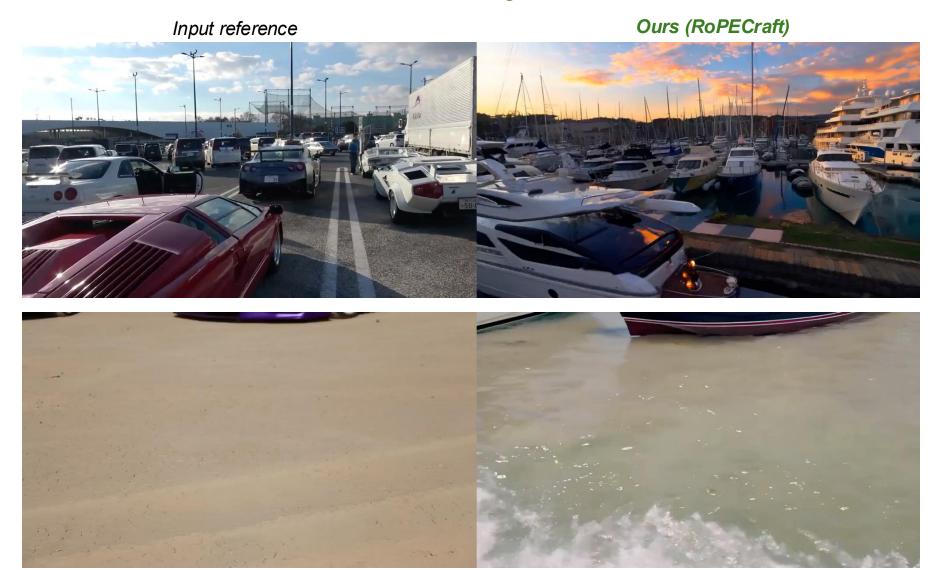
Input reference

Ours (RoPECraft), on CogVideoX

GWTF on CogVideoX

DitFlow on CogVideoX ₁₆

• RoPECraft can also handle camera control in video generation:



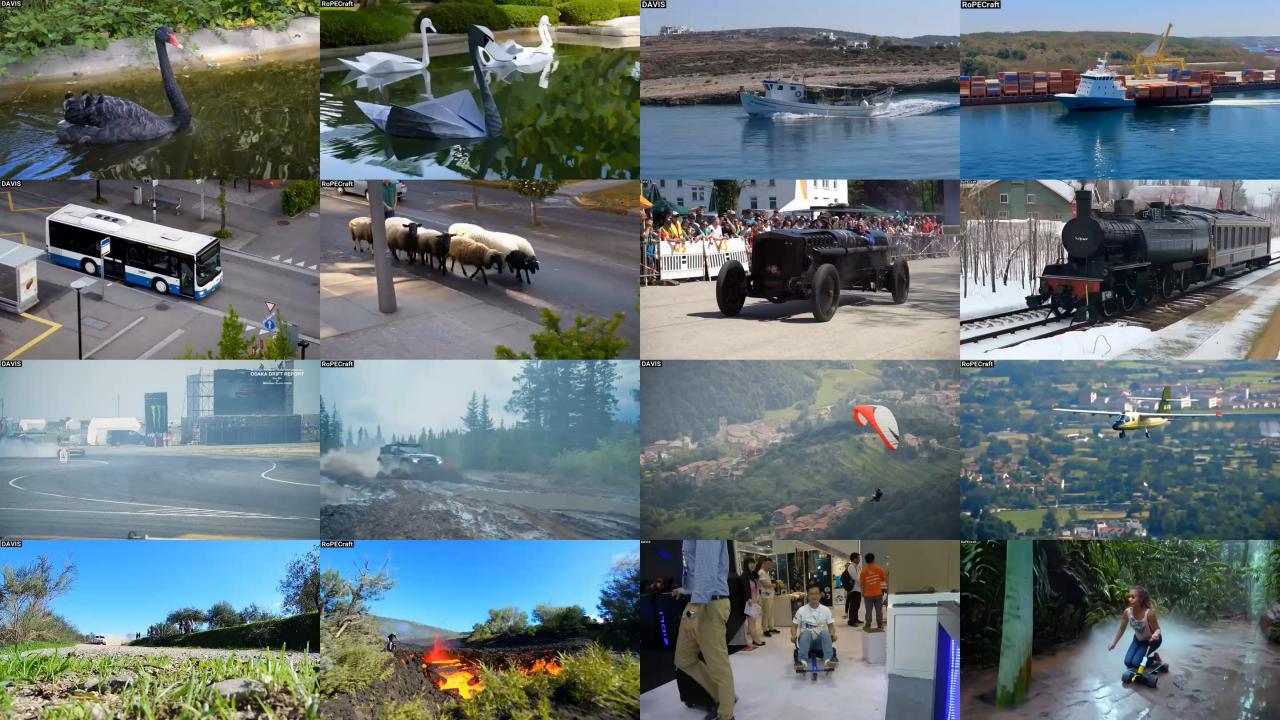
RoPECraft

MOFT

RoPECraft

MOFT

DAVIS



Thanks!