

Content

- Background and Motivation
- Proposed Methodology (AdaMSS)
- Theoretical Guarantees
- Experimental Results
- Future Work

Motivation

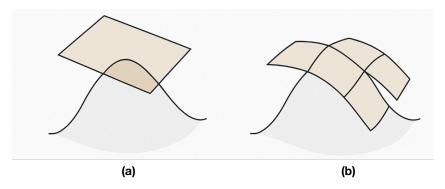


Figure 2: (a) Single subspace-based Methods; (b) Multi-subspace-based Methods.

- Existing methods assume a single low-dimensional subspace for weight updates.
- Trade-off: Larger subspace increase model fixability but also increase the raise computational cost.
- Can we preserve expressiveness without increasing the parameter count?
- Multi-subspace models offer greater flexibility and an enhanced ability to capture diverse information.

Proposed Methodology: AdaMSS

UBC

Does Model weights follows the multi-subspace distribution?

• Low rank Representation (LLR) is used to study the multi-subspace distribution in weights:

$$\min_{\mathbf{Z}} \operatorname{rank}(\mathbf{Z}) \quad s.t. \ \hat{\mathbf{W}}_0 = \hat{\mathbf{W}}_0 \mathbf{Z}$$

The optimal solution Z_0^* is **low rank!**

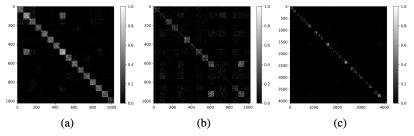
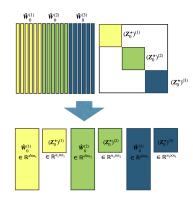
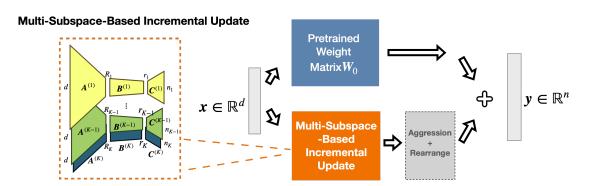


Figure 3: Illustration of multiple subspaces structure in pretrained network weights: an approximate block-diagonal structure of Z_0^{\star} from the first layer of the pretrained (a) ViT-Large (query), (b) Roberta-Large (query), and (c) LLaMA 2-7B (query).

The optimal solution Z_0^* also exhibits an approximate block-diagonal structure, indicating that the columns of weights are grouped into different subspaces.

Proposed Methodology: AdaMSS





Example:

$$\hat{W}_0^{(1)} \approx \hat{W}_0^{(1)} (Z_0^*)^{(1)} = A^{(1)} B_w^{(1)} B_z^{(1)} C^{(1)} = A^{(1)} B^{(1)} C^{(1)}$$

$$rank(\hat{W}_0^{(1)}) = R_1, rank((Z_0^*)^{(1)}) = r_1$$

Figure 4: Illustration of the proposed Multi-Subspace-Based Adaptation Framework

Only
$$H^{(k)} = [B^{(k)}; (C^{(k)})^{\mathsf{T}}] \in \mathbb{R}^{(R_k + n_k) \times r_k}$$
 are trainable.

- Expressiveness \leftrightarrow Efficiency: Reduces the number of trainable parameters from (d+n)r to $\sum_{k=1}^K (n_k r_k + r_k R_k) \le r \max_{k=1,2,\cdots,K} (n_k + R_k)$ while maintaining the expressiveness.
- AdaMSS: the proposed Multi-Subspace-Based Adaptation Framework with Adaptive budget allocation during training by calculating the importance score.

Theoretical Guarantees

Theorem1. Let $g(\cdot)$ be a $\mathcal{L}(g)$ -Lipschitz loss function from $(f_{\mathbf{w}}(\mathbf{x}), \mathbf{y})$ to [0,1], where $f_{\mathbf{w}} \in \mathcal{F}_{\mathrm{AdaMSS}} = \{f_{\mathbf{w}}(\mathbf{x}) = \phi(\mathbf{x}\mathbf{w}) \mid \mathbf{w} = \mathbf{w}_0 + \mathbf{A}\mathbf{B}\mathbf{C}, (\mathbf{A}^{(k)})^{\mathsf{T}}\mathbf{A}^{(k)} = \mathbf{I}, \|\mathbf{B}^{(k)}\mathbf{C}^{(k)}\|_2 \leq B_k\}$ and $(\mathbf{x}, \mathbf{y}) \in \mathbb{X} \times \mathbb{Y}, \mathbb{X} \subseteq \mathbb{R}^d$ and \mathbb{Y} are feature space and output space, respectively. For any $\delta > 0$, the following holds with probability at least $1 - \delta$ for a randomly chosen i.i.d. samples $\mathbb{S} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^m$:

$$\mathbb{E}[g(f_{\mathbf{w}}(\mathbf{x}), \mathbf{y})] \leq \frac{1}{m} \sum_{i=1}^{m} g(f_{\mathbf{w}}(\mathbf{x}_i), \mathbf{y}_i) + \sqrt{\mathcal{L}(g)\pi} \, \mathcal{L}(\phi) \sum_{k=1}^{K} \hat{R} B_k \sqrt{\frac{r_k n_k}{m}} + \sqrt{\frac{9 \log \frac{2}{\delta}}{2m}},$$

where $n = \sum_{k=1}^{K} n_k$, n_k denotes the width of the weight matrix $C^{(k)}$, $\mathcal{L}(\phi)$ is Lipschitz constant for function ϕ , $X = [x_1^\top, ..., x_m^\top] \in \mathbb{R}^{d \times m}$ for the samples $\{x_i\}_{i=1}^m$, and $\max_{i=1,2,...,m} \|x_i\| \leq \hat{R}$.

AdaMSS achieves better generalization performance than single-subspace methods under the same conditions.

Experimental Results

Model	Method	# Trainable	SST-2	MRPC	CoLA	QNLI	RTE	STS-B	- Avg.	
MOUCI		Parameters	Acc.	Acc.	MCC	Acc.	Acc.	PCC	Avg.	
RoBERTa-Base	FF	125M	<u>94.8</u>	90.2	<u>63.6</u>	<u>92.8</u>	<u>78.7</u>	<u>91.2</u>	<u>85.2</u>	
	LoRA	0.3M	95.1 $_{\pm 0.2}$	$89.7_{\pm 0.7}$	$63.4_{\pm 1.2}$	93.3 $_{\pm 0.3}$	$78.4_{\pm 0.8}$	91.5 $_{\pm 0.2}$	<u>85.2</u>	
	AdaLoRA	0.3M	$94.5_{\pm 0.2}$	$88.7_{\pm 0.5}$	$62.0_{\pm 0.6}$	$93.1_{\pm 0.2}$	81.0 $_{\pm 0.6}$	$90.5_{\pm 0.2}$	85.0	
	DyLoRA	0.3M	$94.3_{\pm 0.5}$	$89.5_{\pm 0.5}$	$61.1_{\pm 0.3}$	$92.2_{\pm 0.5}$	$78.7_{\pm 0.7}$	$91.1_{\pm 0.6}$	84.5	
	PiSSA (r = 8)	0.3M	$93.9_{\pm 0.1}$	$89.3_{\pm 0.8}$	$62.1_{\pm 2.9}$	$91.3_{\pm 0.1}$	$77.3_{\pm 1.4}$	$90.5_{\pm 0.2}$	84.1	
	LoRA-PRO	0.3M	$94.2_{\pm 0.3}$	$90.1_{\pm 0.5}$	$64.3_{\pm 0.72}$	$92.0_{\pm 0.2}$	$80.2_{\pm 1.8}$	$90.9_{\pm 0.22}$	85.3	
	LoRA (r = 1)	0.055M	$93.7_{\pm 0.5}$	$89.2_{\pm 0.3}$	$62.3_{\pm 3.6}$	$90.6_{\pm 0.4}$	$79.5_{\pm 0.4}$	$80.8_{\pm 20.6}$	82.7	
	PiSSA (r = 1)	0.055M	$93.3_{\pm 0.2}$	$89.3_{\pm 0.6}$	$62.6_{\pm 1.4}$	$90.6_{\pm 0.4}$	$74.9_{\pm 1.2}$	$90.0_{\pm 0.3}$	83.4	
	LoRETTA	0.057M	$94.6_{\pm 0.5}$	$88.3_{\pm 0.7}$	$61.8_{\pm 1.3}$	$92.7_{\pm 0.2}$	$75.1_{\pm 5.3}$	$90.5_{\pm 0.1}$	83.8	
	WeGeFT	0.049M	$94.1_{\pm 0.5}$	$89.5_{\pm 0.5}$	$63.5_{\pm 1.3}$	$91.2_{\pm 0.4}$	$78.6_{\pm 1.6}$	$90.5_{\pm 0.1}$	84.6	
	$AdaMSS_{base} (r_k = 1)$	0.042M	$94.6_{\pm 0.2}$	$89.2_{\pm 1.0}$	$64.3_{\pm 0.9}$	$92.4_{\pm 0.1}$	$77.2_{\pm 0.7}$	$90.6_{\pm 0.1}$	84.7	
	AdaMSS $(r_k = 1)$	0.032M	$94.6_{\pm 0.2}$	$88.8_{\pm1.4}$	64.5 $_{\pm 1.1}$	$92.4_{\pm 0.1}$	$77.3_{\pm 0.7}$	$90.4_{\pm 0.1}$	84.7	
RoBERTa-Large	FF	356M	96.4	90.9	<u>68</u>	<u>94.7</u>	86.6	92.4	88.2	
	LoRA	0.8M	$96.2_{\pm 0.5}$	$90.2_{\pm 1.0}$	$68.2_{\pm 1.9}$	94.8 _{±0.3}	$85.2_{\pm 1.1}$	$92.3_{\pm 0.5}$	87.8	
	PiSSA (r = 8)	0.8M	$95.5_{\pm 0.2}$	$86.9_{\pm 2.6}$	$61.1_{\pm 3.4}$	$92.1_{\pm 1.7}$	$56.8_{\pm 8.2}$	$91.8_{\pm 0.4}$	80.7	
	LoRA-PRO	0.8M	$95.9_{\pm 0.2}$	90.9 $_{\pm0.4}$	$66.7_{\pm 2.0}$	$93.0_{\pm 0.5}$	$60.5_{\pm 13.5}$	$92.0_{\pm 0.1}$	83.2	
	LoRA (r = 1)	0.147M	$95.7_{\pm 0.4}$	$88.3_{\pm 0.7}$	$62.2_{\pm 2.4}$	$93.9_{\pm 0.2}$	$82.2_{\pm 2.5}$	$78.2_{\pm 29.7}$	83.4	
	PiSSA(r=1)	0.147M	$95.2_{\pm 0.2}$	$84.9_{\pm 3.4}$	$56.6_{\pm 6.2}$	$93.4_{\pm 0.3}$	$65.9_{\pm 11.3}$	$91.3_{\pm 0.2}$	81.2	
	LoRÈTTA	0.132M	$96.2_{\pm 0.2}$	$90.5_{\pm 0.4}$	69.5 $_{\pm 0.6}$	$94.1_{\pm 0.9}$	$53.0_{\pm 0.5}$	$92.0_{\pm 0.2}$	82.6	
	WeGeFT	0.065M	$\overline{95.0}_{\pm 0.3}$	$75.7_{+7.7}$	$64.0_{\pm 2.0}$	$93.7_{\pm 0.3}$	53.6+1.2	$\overline{91.4}_{\pm 0.3}$	78.9	
	$AdaMSS_{base} (r_k = 1)$	0.097M	$96.3_{\pm 0.2}$	$90.5_{\pm 0.3}$	68.0+0.9	94.6+0.1	87.3 +1.0	$92.0_{\pm 0.0}$	88.1	
	AdaMSS $(r_k = 1)$	0.045M	$96.1_{\pm 0.0}$	$90.3_{\pm 0.5}$	$67.2_{\pm 1.2}$	$94.5_{\pm 0.1}$	$87.1_{\pm 2.1}$	$91.9_{\pm 0.0}$	<u>87.9</u>	

AdaMSS achieves accuracy comparable to other PEFT methods while using the fewest trainable parameters.

AdaMSS outperforms most baselines by around 5% in accuracy while using fewer parameters.

Table 1: Natural Language Understanding on GLUE.

Experimental Results

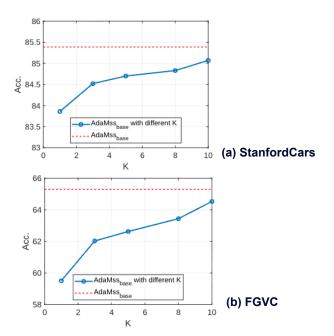
Table 3: Natural Language Generation.

Model	Method	Trainable Parameters	GSM8K	MATH	
LLaMA 2-7B	Full FT	6738M	49.05	7.22	
	LoRA*	320M	42.30	5.50	
	$PiSSA^* (r = 8)$	19M	44.11	5.84	
	LoRA-PRO* $(r=8)$	19M	46.61	6.4	
	PiSSA (r = 8)	<u>4M</u>	36.39	5.35	
	Loretta $(r=5)$	0.3M	37.86	4.6	
	$AdaMSS^*_{base} (r_k = 3)$	<u>4M</u>	51.10	7.57	П
	AdaMSS* $(r_k = 3)$	<u>4M</u>	50.80	7.22	I
	$AdaMSS_{base} (r_k = 3)$	<u>0.8M</u>	44.41	6.05	יון
	Full FT	7242M	67.02	18.6	
	LoRA*	168M	67.70	19.68	
	$PiSSA^* (r = 8)$	20M	71.00	20.40	
	LoRA-PRO* $(r = 8)$	20M	69.59	19.17	
Mistral-7B	PiSSA (r = 8)	3M	64.26	16.87	
	Loretta $(r=5)$	0.3M	62.6	15.6	
	$AdaMSS^*_{base} (r_k = 3)$	4M	70.71	20.44	
	AdaMSS* $(r_k = 3)$	<u>2M</u>	<u>70.74</u>	19.47	
	$AdaMSS_{base} (r_k = 3)$	<u>0.5M</u>	65.43	17.74	
	Full FT	8538M	71.34	22.74	
	LoRA*	200M	74.90	31.28	
Gemma-7B	$PiSSA^* (r = 8)$	25M	75.48	29.59	
	LoRA-PRO*	25M	75.90	29.25	
	PiSSA (r = 8)	<u>3M</u>	71.52	27.53	
	Loretta $(r=5)$	0.2M	70.23	26.28	
	$AdaMSS^*_{base} (r_k = 3)$	6M	75.33	29.73	
	AdaMSS* $(r_k = 3)$	4M	76.41	28.64	
	$AdaMSS_{base} (r_k = 3)$	<u>0.7M</u>	70.86	27.38	

AdaMSS outperforms most baseline by around 5% in accuracy, while using fewer parameters.

AdaMSS achieves the best performance, using less than 1% of the parameters required for Full FF

Figure 5: Ablation study for subspace number K.



Future Work

- Beyond Fine-Tuning: Extend the multi-subspace perspective to **network compression** and **model pruning**.
- Theoretical insights of multi-subspace structures in the network weights.

Reference

- [Houlsby et al., ICML 2019] Houlsby, Neil and Giurgiu, Andrei and Jastrzebski, Stanislaw and Morrone, Bruna and De Laroussilhe, Quentin and Gesmundo, Andrea and Attariyan, Mona and Gelly, Sylvain. Parameter-Efficient Transfer Learning for NLP. In *International conference on machine learning*, 2019.
- [Lester et al., EMNLP 2021] Brian Lester, Rami Al-Rfou, Noah Constant. The Power of Scale for Parameter-Efficient Prompt Tuning.
- [Li et al., ACL 2021] Xiang Lisa Li, Percy Liang. Prefix-Tuning: Optimizing Continuous Prompts for Generation.
- [Hu et al., ICLR 2022] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: low-rank adaptation of large language models. In *International conference on Learning Representations*, 2022.
- [Zhang et al., ICLR 2023] Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng, Weizhu Chen, Tuo Zhao. AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning.
- [Meng et al., NeurIPS 2024] Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: principal singular values and singular vectors adaptation of large language models. In *Neural Information Processing Systems*, 2024.
- [Zhang et al., ICML 2022] Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen, and Tuo Zhao. Platon: Pruning large transformer models with upper confidence bound of weight importance. In *International conference on machine learning*, pages 26809–26823. PMLR, 2022.
- [Wang et al., NeurIPS 2024] Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation. In *Neural Information Processing Systems*, 2024.
- [Liu et al., TPAMI 2012] Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and Yi Ma. Robust recovery of subspace structures by low-rank representation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(1):171–184, 2012.
- [Wang et al., NeurIPS 2024] Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation. In *Neural Information Processing Systems*, 2024.
- [Zheng et al., NeurIPS 2025] Jingjing Zheng, Wangling Lu, Yiming Dong, Chaojie Ji, Yankai Cao, Zhouchen Lin. AdaMSS: Adaptive Multi-Subspace Approach for Parameter-Efficient Fine-Tuning, In *Neural Information Processing Systems*, 2025.

