

Rebalancing Contrastive Alignment with Bottlenecked Semantic Increments in Text-Video Retrieval

Jian Xiao¹, Zijie Song², Jialong Hu¹, Hao Cheng¹, Jia Li^{1*}, Zhenzhen Hu^{1*}, Richang Hong¹

¹School of Computer Science and Information Engineering, Hefei University of Technology,
Hefei, China

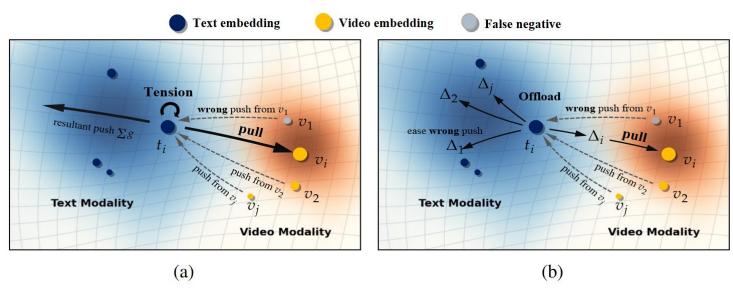
²School of Big Data and Statistics, Anhui University, Hefei, China

{j.xiao_hfut, chenghao}@mail.hfut.edu.cn, zjsong@ahu.edu.cn zdszds534@gmail.com, {lijia, zzhu}@hfut.edu.cn, hongrc.hfut@gmail.com

Content

- Motivation
- Contribution
- Method
- Experiment
- Qualitative Analysis

Motivation



- Text-video retrieval aims to find relevant videos given a text query. Current contrastive models (e.g., CLIP) face two major issues (see Fig. (a)): 1) Optimization tension: caused by the modality gap, where gradients from positives and negatives cancel out, leaving the anchor nearly unchanged. 2) Hard negative noise: semantically similar negatives push the anchor in the wrong direction. These issues limit the upper bound of the modal alignment capability.
- We redistribute gradients by introducing a pair-specific increment Δ_{ij} that linearly perturbs each text anchor t_i . This also offloads noisy gradients Δ_{ij} , stabilizing t_i 's semantics (see Fig. (b)).
- Treating InfoNCE loss \mathcal{L}_i for t_i as a multivariate function over $\{\Delta_{ij}\}_{j=1}^B$, we derive the gradient update of Δ_{ij} via a multivariate first-order Taylar Expansion under a ℓ_2 trust region constraint and interpret it as an *Information Bottleneck* to prevent trivial solutions.

Contribution

- 1) We analyze the gradient structure of InfoNCE and reveal its inherent multi-variable coupling by introducing pairwise increments Δ_{ij} . A multivariate first-order Taylor expansion within a trust region yields a update rule for each Δ_{ij} consistent with the InfoNCE descent direction.
- 2) We propose a Gap-Aware Retrieval (GARE) framework, where a learnable network ψ predicts pair-specific increments Δ_{ij} and integrates them into the forward pass to offload optimization tension while mitigating noise from false negatives. We also introduce a **relaxed** *Variational Information Bottleneck* (VIB) objective that regularizes Δ_{ij} , balancing informativeness and compression.
- **3)** Experiments on four text–video retrieval benchmarks, i.e., MSR-VTT, DiDeMo, ActivityNet Captions and MSVD, showing consistent improvements, and further analyses confirm that the learned increments Δ_{ij} are semantically meaningful and geometrically structured.

Observation

For batch size B, the gradient of \mathcal{L}_i on an anchor t_i is the sum of B pairwise gradients:

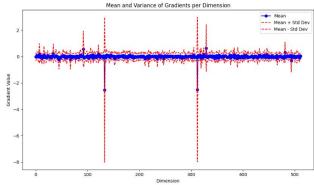
$$\nabla_{t_{i}} \mathcal{L}_{i} = \frac{1}{\tau} \sum_{j}^{B} \left(p_{ij} - y_{ij} \right) \cdot \left(\frac{v_{j}}{|t_{i}|_{2} |v_{j}|_{2}} - \cos(t_{i}, v_{j}) \cdot \frac{t_{i}}{|t_{i}|_{2}^{2}} \right), \quad \mathcal{L}_{i} = -\log \frac{e^{\cos(t_{i}, v_{i})/\tau}}{\sum_{j}^{B} e^{\cos(t_{i}, v_{j})/\tau}}$$

where $p_{ij} = \frac{e^{\cos(t_i, v_i)/\tau}}{\sum_{i=1}^{B} e^{\cos(t_i, v_j)/\tau}}$ and $y_{ij} \in \{0, 1\}$ is match label.

- Empirical results on 512 dimensions show severe cancellation among them.
 - Gradients from most negative pairs (t_i, v_i) : magnitude ≈ 40 to 60 (bottom of right-side figure).
 - Adding the positive pair (t_i, v_j) shrinks it to 2 to 4 (top of right-side figure).
 - \rightarrow The anchor t_i barely moves during training.

Problem

- t_i stays trapped in a narrow optimization region.
- The modality gap constrains updates and causes in-place optimization.



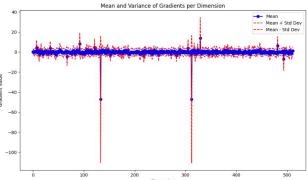


Figure 2: Mean and variance of summed gradient (top) and negative gradients (bottom) across 512 dimensions, showing collinear but opposite forces that largely cancel out.

Idea

- To relax optimization tension, introduce a pair-specific increment Δ_{ij} for each pair (t_i, v_j) .
- Replace the anchor by a linearly perturbed representation: $t_{\Delta_{ij}} = t_i + \Delta_{ij}$, this results a multivariate InfoNCE \mathcal{L}_i :

$$\mathcal{L}_{i}(\Delta_{i1}, \Delta_{i2}, ..., \Delta_{iB}) = -\log \frac{\exp(s_{ii}/\tau)}{\sum_{j}^{B} \exp(s_{ij}/\tau)}, \ s_{ij} = \cos(t_{i} + \Delta_{ij}, v_{j})$$

Effects

- 1) Gradient redistribution redirects gradients from t_i to Δ_{ij} .
 - Each Δ_{ij} only receives gradient from its own pair (t_i, v_j) , where the gradients are

$$\nabla_{t_{\Delta_{ij}}} \mathcal{L}_{i}(\Delta_{i*}) = \frac{1}{\tau} \sum_{j}^{B} \left(p_{ij} - y_{ij} \right) \cdot \left(\frac{v_{j}}{\left| t_{i} + \Delta_{ij} \right|_{2} \left| v_{j} \right|_{2}} - \cos \left(t_{i} + \Delta_{ij}, v_{j} \right) \cdot \frac{t_{i} + \Delta_{ij}}{\left| t_{i} + \Delta_{ij} \right|_{2}^{2}} \right)$$

$$\nabla_{\Delta_{ij}} \mathcal{L}_{i}(\Delta_{i*}) = \nabla_{t_{\Delta_{ij}}} \mathcal{L}_{i}(\Delta_{i*}), \ \nabla_{t_{i}} \mathcal{L}_{i}(\Delta_{i*}) = \sum_{j}^{B} \nabla_{t_{\Delta_{ij}}} \mathcal{L}_{i}(\Delta_{i*}).$$

- Collectively, $\{\Delta_{ij}\}_{i}^{B}$ enlarge the **effective optimization region** of t_{i} .
- \blacksquare 2) Δ_{ij} absorbs noisy gradients from hard negatives, reducing semantic interference

Method

7

Multivariate Taylor Expansion

- Gradient of \mathcal{L}_i w.r.t. one Δ_{ij} depends on other non-zero Δ_{ik} → capturing inter-pair coupling.
- Expanding at $\Delta_{ik} = 0$ would break the relative ranking prior among pairs. This results to a multivariate first-order Taylor Expansion:

$$\mathcal{L}_{i}(\Delta_{i*}) \approx \mathcal{L}_{i}\left(\Delta_{i*}^{(t)}\right) + \sum_{j}^{B} \left[\nabla_{\Delta_{ij}} \mathcal{L}_{i}\left(\Delta_{i*}^{(t)}\right)\right]^{\mathsf{T}} \left(\Delta_{ij} - \Delta_{ij}^{(t)}\right)$$

- ℓ_2 Trust-Region Constraint $|\Delta_{ij}|_2 \le \varepsilon_{ij}$ to limit perturbation magnitude.
- **Derived Iterative Update with Initial Non-Zero State** $\Delta_{i*}^{(t)}$ (by steepest descent + Cauchy–Schwarz):

$$\Delta_{ij}^{(t+1)} = \Delta_{ij}^{(t)} - \alpha_{ij}^{(t)} \cdot \frac{\nabla_{\Delta_{ij}} \mathcal{L}_i \left(\Delta_{i*}^{(t)} \right)}{\left| \nabla_{\Delta_{ij}} \mathcal{L}_i \left(\Delta_{i*}^{(t)} \right) \right|_2}, \quad \text{where } \alpha_{ij}^{(t)} \text{ analytically ensures } \left| \Delta_{ij}^{(t+1)} \right|_2 \leq \varepsilon_{ij}.$$

Implementation

- Each iteration initializes $\Delta_{i*}^{(t)}$ from a neural module $\psi(t_i v_j, \mathbf{V}; \mathbf{O}^{(t)}) = q_{\psi}(\Delta_{ij}^{(t)} | t_i, v_j)$ after **CLIP Encoder**.
- **Back-propagation naturally satisfies this update rule with different learning rate** η from optimizer.

Method

■ Variation Information Bottleneck Regularization for Δ_{ij}

- Δ_{ij} only receives gradients from its own pair (t_i, v_j) , lacking contrastive interaction with other pairs.
 - → Direct optimization easily leads to **trivial or collapsed** Δ_{ij} .
- Treat Δ_{ij} as an information bottleneck variable that captures only essential **alignment information** between t_i and v_j . This results a Variation Information Bottleneck objective:

$$\mathcal{L}_{\text{VIB}} := \underbrace{-\mathbb{E}_{(t,v,y)}\mathbb{E}_{\Delta \sim q_{\psi}(\Delta|t,v)}[\log q_{\theta}(y|\Delta)]}_{\text{multivariate InfoNCE loss}} + \beta \cdot \underbrace{\mathbb{E}_{(t,v)}\big[\text{KL}\big(q_{\psi}(\Delta|t,v)||\mathcal{N}(0,I)\big)\big]}_{\text{compression term }\mathcal{L}_{\text{IB}}}.$$

- The $\psi(\cdot)$ serves as a *deterministic posterior*, each Δ_{ij} is viewed as a **Dirac delta** centered at a fixed value.
 - Since the Dirac posterior is *singular* w.r.t. the Gaussian prior $\mathcal{N}(0, I)$, we relax the compression term \mathcal{L}_{IB} on the text side, leveraging the *one-to-many* nature of video—text pairs.
 - This overly penalizes video-side information and circumvents the singularity between the deterministic and stochastic distributions. By the convexity of $KL(\cdot || \mathcal{N}(0, I))$ and Jensen's inequality, this yields a relaxation:

$$\mathbb{E}_{(t,v)}\big[\mathrm{KL}\big(q_{\psi}(\Delta|t,v)||\mathcal{N}(0,\mathbf{I})\big)\big] = \mathbb{E}_{v}\mathbb{E}_{t|v}\big[\mathrm{KL}\big(q_{\psi}(\Delta|t,v)||\mathcal{N}(0,\mathbf{I})\big)\big]$$
$$\geq \mathbb{E}_{v}\big[\mathrm{KL}\big(\overline{q_{\psi}}(\Delta|v)||\mathcal{N}(0,\mathbf{I})\big)\big].$$

Extra Regularization: Radii Prior & Direction Diversity

Motivation

 Δ_{ij} from $\psi(\cdot)$ often lie on the trust-region boundary. We regularize them to (1) enlarge their **magnitude diversity**, and (2) increase **directional variety** across pairs.

■ Trust-Region Radii Prior

■ Encourage heterogeneous radii for each anchor t_i :

$$\mathcal{L}_{\varepsilon} = -\max\left(\mathbb{E}_{t}\left[\operatorname{Var}\left(\left\{\varepsilon_{ij}\right\}_{j}^{B}\right)\right], \lambda\right), \lambda > 0$$

- Larger variance → richer optimization radii.
- Prevents all Δ_{ij} collapsing to similar magnitudes.

Direction Diversity

■ Promote angular diversity among normalized increments:

$$\mathcal{L}_{\text{dir}} = \mathbb{E}_t \left[\log \mathbb{E}_{j,k} \left[\exp \left(-\alpha \cdot \left(1 - \left\langle z_{ij}, z_{ik} \right\rangle \right) \right) \right] \right], \quad z_{ij} = \frac{\Delta_{ij}}{\left| \Delta_{ij} \right|_2}$$

- Reduces directional redundancy.
- Expands geometric coverage of Δ_{ij} around t_i .

Experiment

Table 1: Comparison results on MSR-VTT dataset on Text-to-Video Retrieval and Video-to-Text Retrieval. DiCoSA [24] utilizes QB-Norm [6] for inference and is grayed out for a fair comparison. Note that T2VLA [45] is a non-CLIP method.

Methods	'	Text-to-	Video R	etrieva	l		Video-te	o-Text R	etrieva	l
	R@1↑	R@5↑	R@10↑	MdR↓	MnR↓	R@1	R@5↑	R@10↑	MdR↓	MnR↓
T2VLA [45] CVPR21	29.5	59.0	70.1	4.0	<u>-</u>	31.8	60.0	71.1	3.0	12
CLIP4Clip [33] Neurocomputing22	44.5	71.4	81.6	2.0	15.3	42.7	70.9	80.6	2.0	11.6
X-Pool [17] CVPR22	46.9	72.8	82.2	2.0	14.3	44.4	73.3	84.0	2.0	9.0
TS2-Net [32] ECCV22	47.0	74.5	83.8	2.0	13.0	45.3	74.1	83.7	2.0	9.2
EMCL-Net [22] NeurIPS22	46.8	73.1	83.1	2.0	12.8	46.5	73.5	83.5	2.0	8.8
UATVR [16] ICCV23	47.5	73.9	83.5	2.0	12.3	46.9	73.8	83.8	2.0	8.6
DiCoSA [24] IJCAI23	47.5	74.7	83.8	2.0	13.2	46.7	75.2	84.3	2.0	$\frac{8.6}{8.9}$
ProST [29] ICCV23	48.2	74.6	83.4	2.0	12.4	46.3	74.2	83.2	2.0	8.7
HBI [23] CVPR23	48.6	74.6	83.4	2.0	12.0	46.8	74.3	84.3	2.0	8.9
DiffusionRet [25] ICCV23	49.0	75.2	82.7	2.0	12.1	47.7	73.8	84.5	2.0	8.8
EERCF [38] AAAI24	47.8	74.1	84.1	-	-	44.7	74.2	83.9	-	-
MPT [54] ACM MM24	48.3	72.0	81.7	-	14.9	46.5	74.1	82.6	-	11.8
Baseline	46.6	73.4	82.2	2.0	12.6	45.6	73.4	82.4	2.0	9.6
GARE (Ours)	49.1	74.7	83.6	2.0	12.0	48.6	75.3	85.3	2.0	8.5

Table 2: Comparison results on DiDeMo, ActivityNet Captions, and MSVD datasets on Text-to-Video Retrieval. Note that FROZEN [3] is a non-CLIP method.

	DiDeN	lo			Activi	tyNet	Capti	ions			MSV	'D		
Methods	R@1	R@5	R@10	MnR	Methods	R@1	R@5	R@10	MnR	Methods	R@1	R@5	R@10	MnR
TS2-Net CLIP4Clip DiCoSA DiffusionRet HBI	42.8	68.5 74.6 74.7	79.2 83.5 82.7	18.9 11.7	CLIP4Clip TS2-Net DiCoSA MPT HBI	41.0 42.1 41.4	73.6 73.6 70.9	84.6	8.4 6.8 7.8	FROZEN [3] CLIP4Clip EMCL-Net UATVR Diffusion	45.2 42.1 46.0	64.7 75.5 71.3 76.3 75.9	84.3 81.1 85.1	10.3 17.6 10.4 15.7
Baseline GARE (Ours	45.4 47.6				Baseline GARE (Ours)					Baseline GARE (Ours)			84.5 84.5	

Experiment

Text-to-Video Retrieval results on MSR-VTT 1k-A. First row denotes the baseline.

Table 3: Ablation on losses combination on Table 4: Ablation on Context Modality Choice of ψ . Text-to-video retrieval results on three datasets under different context modalities.

Δ	\mathcal{L}_{IB}	$\mathcal{L}_{arepsilon}$	$\mathcal{L}_{ ext{dir}}$	R@1↑	R@5↑	R@10↑	MnR↓
	Bas	elin	e	46.6	73.4	82.2	12.6
1				47.4	73.8	82.8	12.4
1		1		47.2	73.3	82.2	12.4
1			1	47.0	73.1	82.3	12.6
1		1	1	47.4	73.7	82.8	12.3
1	1			48.3	74.2	83.2	12.4
1	V	1	V	49.1	74.7	83.6	12.0

Dataset	Context C	R@1↑	R@5↑	R@10↑	MnR↓
MSR-VTT	$egin{array}{c} \mathbf{T}_{ ext{word}} \ \mathbf{V}_{ ext{frame}} \end{array}$	47.4 49.1	73.5 73.3	82.1 82.2	12.9 12.4
ActivityNet	$egin{array}{c} \mathbf{T}_{ ext{word}} \ \mathbf{V}_{ ext{frame}} \end{array}$	42.6 40.2	73.6 72.2	84.4 83.6	6.8 8.1
DiDeMo	$egin{array}{c} \mathbf{T}_{ ext{word}} \ \mathbf{V}_{ ext{frame}} \end{array}$	46.5 47.6	74.3 75.4	82.6 83.1	12.3 12.0

Table 5: Ablation on the interaction mode of ψ on Table 6: Ablation on the IB prior $r(\Delta)$ on Text-to-Video Retrieval results on MSR-VTT 1k-A. MSR-VTT 1k-A. Comparison between nor-The variant removes the relative gap modeling by malized and unnormalized Δ_{ij} distributions using t_i as the query and V_{frame} as the key-value, with different Gaussian priors. producing t'_{ij} and $\Delta_{ij} = v_j - t'_{ij}$. Our gap-aware design preserves pair-specific structure and yields superior alignment.

Interaction Mode of ψ	R@1↑	R@5↑	R@10↑	MnR↓
$Query = t_i \text{ (no gap)}$	46.1	73.2	81.9	13.7
$Query = v_j - t_i$	49.1	74.7	83.6	12.0

σ	R@1↑	R@5↑	R@10↑	MnR↓
Norma 1.0	lized Δ 47.8	74.5	82.1	12.9
<i>Unnorr</i> 0.1	nalized Δ 47.7	73.4	82.2	12.9
1.0	49.1 48.1	74.7 74.6	83.6 83.5	12.0 12.0
100.0	48.6	74.7	83.2	11.8

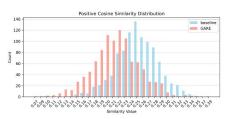
Qualitative Analysis

Lower Cosine Similarity

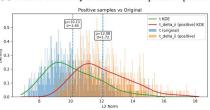
- → better **uniformity** on unit hypersphere
- also can be seen as lowering model's confidence (belief mass)
- see Fig.6 for hard negative comparison with baseline
 - GARE produces smoother logits than baseline
 - \blacksquare \rightarrow semantic similar samples with similar logits

• Larger $t_{\Delta_{ij}}$ Norm Magnitude on both positive and negative

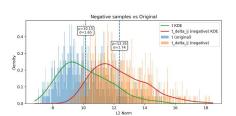
- expanding representation to a broader space region for better fine-grained alignment
- Larger ℓ_2 distance between $t_{\Delta_{ij}}$ and v_j compared to the pair of (t_i, v_j)
 - \rightarrow also can be seen as promoting **uniformity**



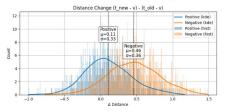
(a) Cosine similarity distribution of positive pairs.



(c) Norms distribution on positive pairs.



(b) Norm distribution on negative pairs.



(d) Distance shift: t_{Δ} vs. t.

Figure 3: Qualitative analysis on the MSR-VTT 1k-A validation set. t_{delta} denotes t_{Δ} . Our method induces greater angular separation between positive pairs (a), redistributes t_{Δ} norms to release gradient tension (b, c), and pushes t_{Δ} outward from v_i (d), promoting uniformity.

Query: a woman on a couch talks to a man

Query: a person is pu

Baseline: 0.2400 GARE: 0.2281

Baseline: 0.2349 GARE: 0.2276

Caption: woman talking to a man in an interview

Caption: it's a cook

Query: a person is putting the vegetable in to the water and boil it

Figure 6: Comparison of hard negative alignment before and after applying Δ_{ij} optimization. Compared with the baseline, GARE produces smaller similarity gaps among semantically related videos v_j . This indicates that GARE effectively mitigates the noise from hard negatives and reduces the semantic deviation of the anchor t_i , leading to more stable and consistent alignment across similar samples.

Qualitative Analysis

■ Gradient Analysis: How △ Redistributes Optimization Tension

Observation of Gradients on t_i In dimensions with strong optimization activity, both positive and negative gradients reach similar magnitudes ($g \approx 2.5$) and appear as near opposites (Figure. 4).

Gradient Redistribution

When aggregated across all pairs, opposite gradients cancel in the anchor update $\nabla_{t_i} \mathcal{L}_i(\Delta_{i*}) \rightarrow \text{near zero (Figure. 7)}.$

Each Δ_{ij} , however, receives gradients only from its own pair (t_i, v_j) :

• positive $\Delta_{ij} \approx +g$ • negative $\Delta_{ij} \approx -g/B$ Thus, the total effective optimization strength per anchor $\approx |+g| + B \cdot |-g/B| \approx 2|g|$.

Insight

 Δ_{ij} components remain **actively optimized** and trace how t_i explores the representation space. By distributing gradient flow across Δ , the framework **offloads optimization tension** from anchors and **expands their reachable region**, breaking the **locality constraint** imposed by the modality gap.

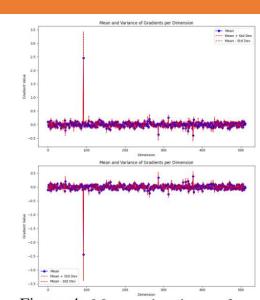


Figure 4: Mean and variance of perdimension gradients, indicating the positive gradients (top) acting on $t_{\Delta_{ii}}$ and Δ_{ii} and the sum of all negative gradients (bottom) for $t_{\Delta_{ij}}$ and Δ_{ij} .

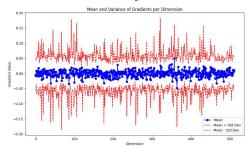


Figure 7: Mean and variance of total gradients acting on t_i on each dimension.

Thanks!

