VisDiff: SDF-Guided Polygon Generation for Visibility Reconstruction, Characterization and Recognition

Rahul Mahesh¹, Jun-Jee Chao¹ and Volkan Isler²

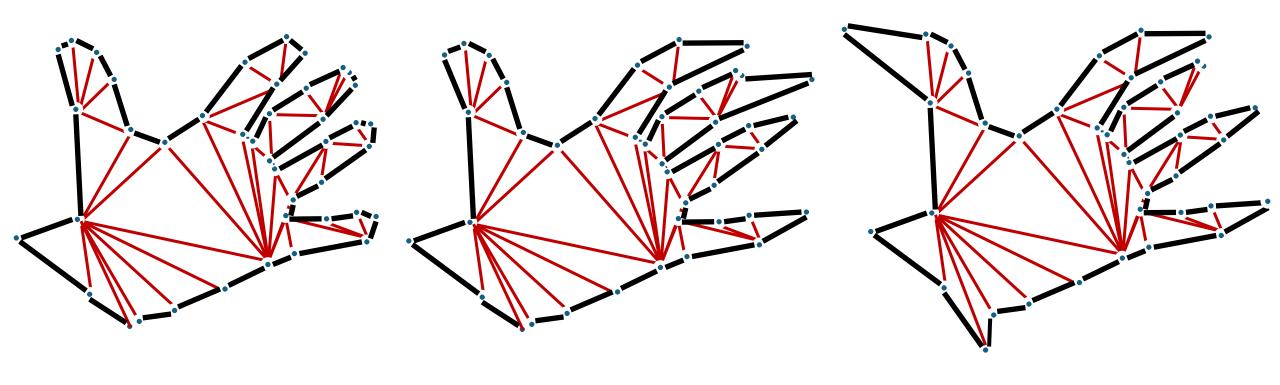
Robotics, Sensing and Networks Lab ¹University of Minnesota and ²The University of Texas at Austin

Topological Features Shape Triangulation Triangulation Dual **Visibility** Graph

Topological Features Shape Triangulation Triangulation Dual **Visibility** Graph

rsn.cs.utexas.edu

• Multiple Polygons can exist with the same visibility graph / topological feature



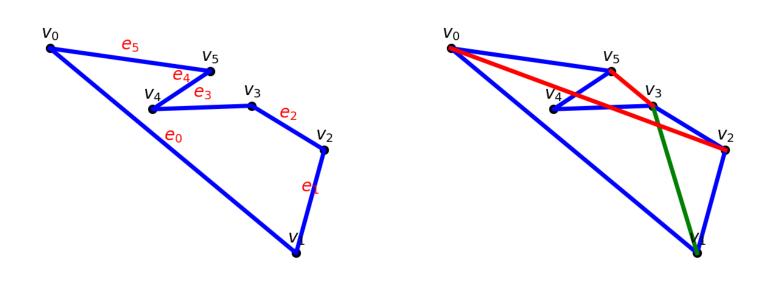
Note: Only few visibility edges are visualized

Topological Features Shape Triangulation Triangulation Dual **Visibility** Graph

rsn.cs.utexas.edu

What is a Visibility Graph?

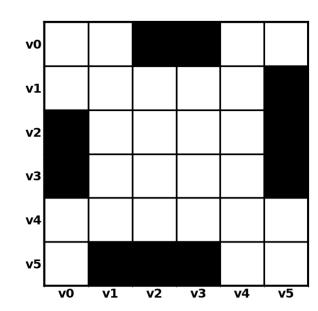
 Two vertex locations are visible to each other if line segment joining them is contained inside the polygon



Simple Polygon

Example Visibility Edges

Green: Visible Edges **Red:** Non-Visible Edges



Visibility Graph

White (1): Visible Edges
Black (0): Non-Visible Edges

Problem Formulation:

Reconstruction

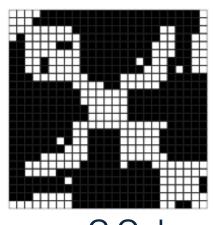
Given a valid visibility graph G, generate a polygon P such that Vis(P) = G

Characterization

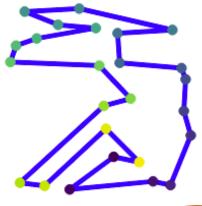
Given a valid visibility graph G, generate all polygons P such that Vis(P) = G

Recognition

- Given an arbitrary graph G, determine whether there exists a polygon P such that Vis(P) = G
- Solved only for specific polygon classes, general cases remain open.



A graph G is *valid* if at least one polygon exists for it.



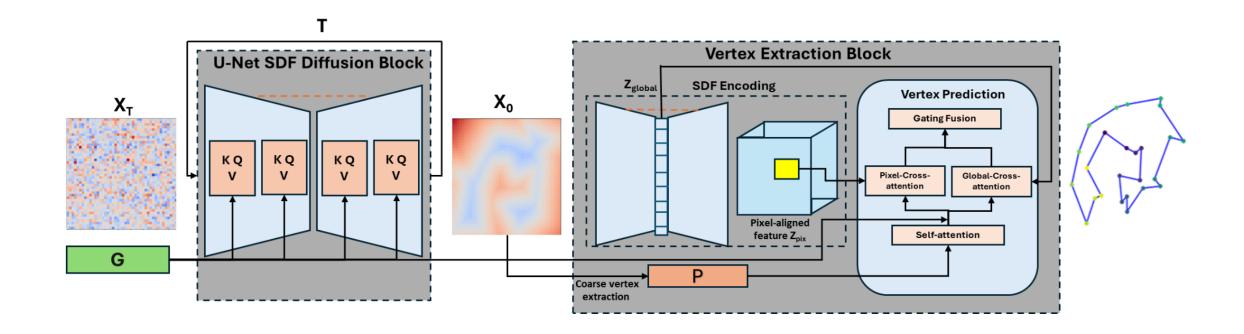
Core Contribution

- We propose VisDiff to solve the following—
 - Reconstruction Given a valid visibility graph G, generate a polygon P such that Vis(P) = G
 - Characterization Given a valid visibility graph G, generate all polygons P such that Vis(P) = G
 - Recognition Given an arbitrary graph G, determine whether there exists a polygon P such that Vis(P) = G

Core Contribution

- We propose VisDiff to solve the following—
 - Reconstruction Given a valid visibility graph G, generate a polygon P such that Vis(P) = G
 - Characterization Given a valid visibility graph G, generate all polygons P such that Vis(P) = G
 - Recognition Given an arbitrary graph G, determine whether there exists a polygon P such that Vis(P) = G
- Demonstrate that utilizing the SDF enhances the efficiency of the current learning approach in understanding visibility relationships.

VisDiff: Architecture



VisDiff: Approach

Reconstruction

- Input: Valid visibility graph G
- Initialize: Single seed sampled from a Gaussian
- Output: Polygon P with visibility graph G'

Characterization

- Input: Valid visibility graph G
- o **Initialize:** Multiple seeds sampled from a Gaussian
- Output: Multiple Polygons P with visibility graphs G'

VisDiff: Approach

Reconstruction

- **Input:** Valid visibility graph **G**
- **Initialize:** Single seed sampled from a Gaussian
- Output: Polygon P with visibility graph G'

Characterization

- **Input:** Valid visibility graph **G**
- Initialize: Multiple seeds sampled from a Gaussian
- Output: Multiple Polygons P with visibility graphs G'

Recognition

- Input: G
- **Initialize:** Multiple seeds sampled from a Gaussian
- Output: Multiple Polygons P with visibility graphs G'
- Classify valid if G G' > T (Threshold)

Results - Quantitative Metrics

- Reconstruction and Recognition
 - Given ground truth G and G' of the predicted polygon-
 - Classification metrics
 - Accuracy
 - Precision
 - Recall
 - F1-Score
 - We primarily use F1-Score as visibility graphs can contain imbalance between visible and non-visible edges

Results - Quantitative Metrics

- Reconstruction and Recognition
 - Given ground truth G and G' of the predicted polygon-
 - Classification metrics
 - Accuracy
 - Precision
 - Recall
 - F1-Score
 - We primarily use F1-Score as visibility graphs can contain imbalance between visible and non-visible edges
- Characterization
 - Given the set of polygons P with with visibility graphs G'
 - Diversity: Average Chamfer distance between point sets of P
 - Coverage: Breadth-First exploration over the latent space
 - Initialize root polygon P using VisDiff.
 - Breadth-first exploration is then performed up to a fixed depth **d** and branching factor **b** Children generated by adding asheduled points to its persont in letters appear.
 - Children generated by adding scheduled noise to its parent in latent space.
 - Node expanded: (1) F1 greater than T (Same as Recognition), (2) Distance from previous nodes greater than T_d
 - Coverage: expanded nodes / maximum possible node

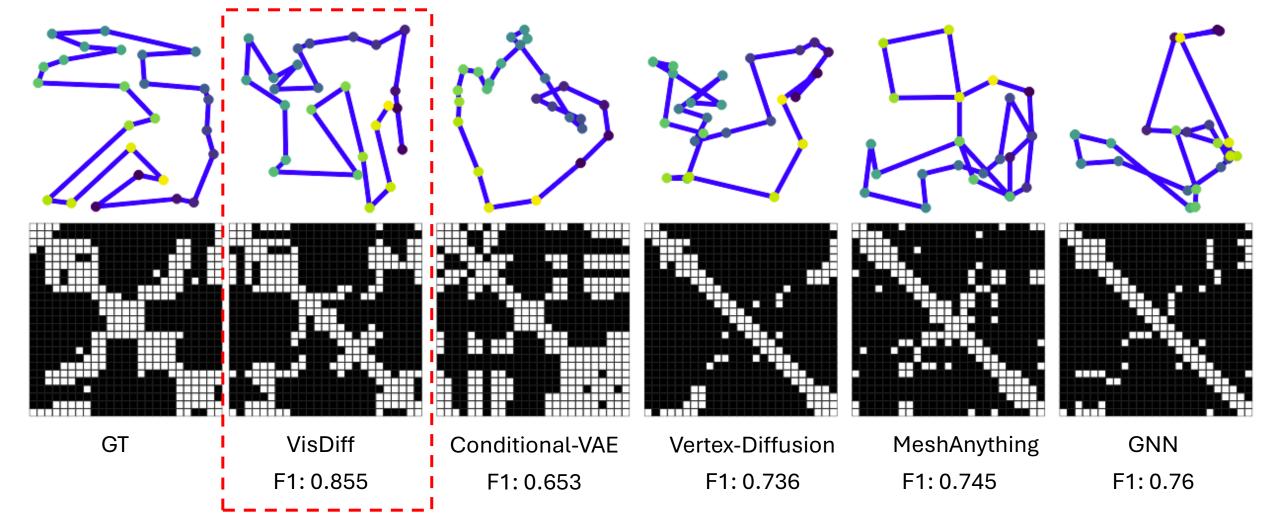
Baselines

- No existing learning method for visibility → polygon mapping
- We use generative models learning similar topological mappings as baselines-
 - Triangulation-conditioned Mesh Generation: MeshAnything [1], Vertex-Diffusion [2]
 - Graph Embedding: GNN [3]
 - Conditional-Generation: Conditional-VAE [4]
 - Note: We train the following models for visibility-polygon mapping

Quantitative Metrics - Reconstruction

	Accuracy	Precision	Recall	F1
Vertex- Diffusion [2]	0.777	0.7773	0.716	0.724
Conditional- VAE [4]	0.74	0.718	0.704	0.702
GNN [3]	0.73	0.786	0.686	0.674
MeshAnything [1]	0.7747	0.739	0.723	0.712
VisDiff	0.924	0.914	0.911	0.912

Qualitative Results- Reconstruction



White: Visible Edges
Black: Non-Visible Edges

rsn.cs.utexas.edu

Quantitative Metrics - Characterization

- Diversity
 - Mean Chamfer Distance: 0.56
 - N = 50
 - **High** Diversity: **20**% of 2x2 domain

Quantitative Metrics - Characterization

Diversity

Mean Chamfer Distance: 0.56

• N = 50

• **High** Diversity: **20**% of 2x2 domain

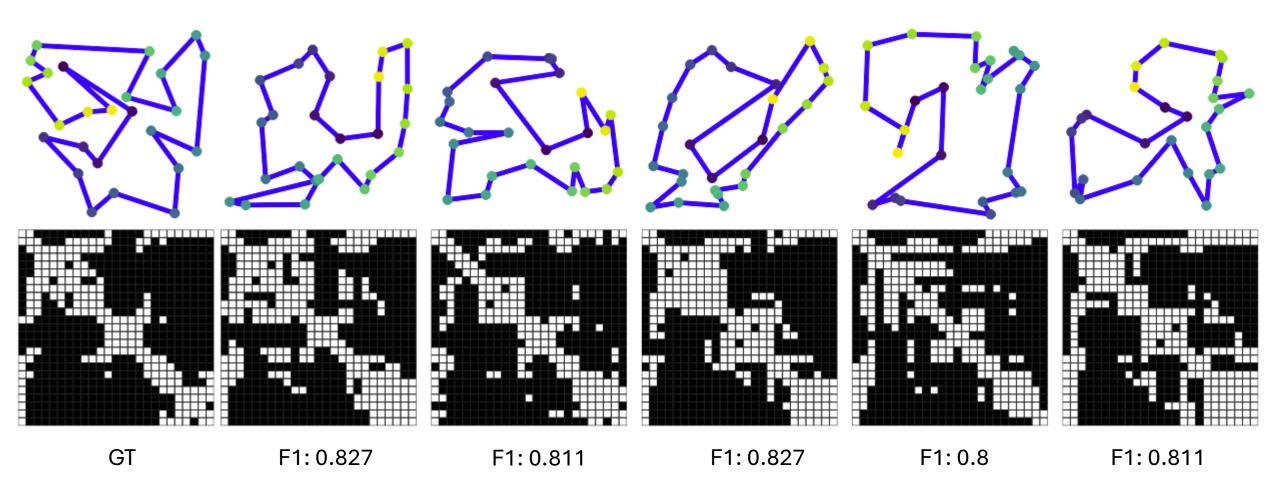
Coverage

F1 Threshold T	Depth d	Branching Factor b	Distance Threshold T _d	Coverage Metric
0.85	5	2	0.1	0.475
0.80	5	2	0.1	0.488
0.75	5	2	0.1	0.495
0.70	5	2	0.1	0.515

Average: 50% coverage metrics ~32 nodes indicating high coverage

• Training: **20** Augmentations

Qualitative Results- Characterization

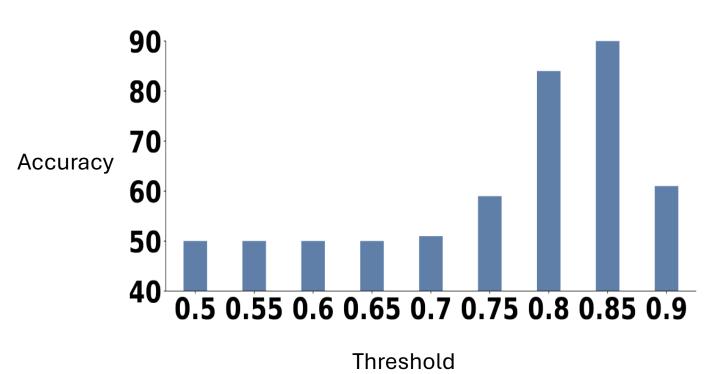


White: Visible Edges
Black: Non-Visible Edges

rsn.cs.utexas.edu

Quantitative Metrics - Recognition

Polygons with holes are used as proxy for non-valid visibility graphs



Threshold - F1 Score **Accuracy** - Classification Accuracy

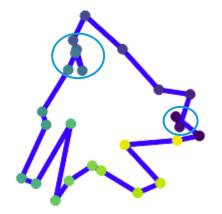
 90% Accuracy achieved with
 0.85 threshold F-1 Score

Qualitative Results - Recognition

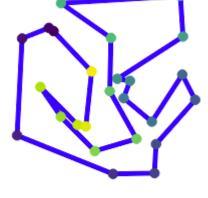
Hole shows crossings

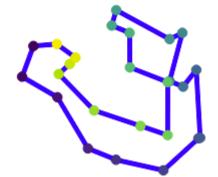
No valid polygon generated by VisDiff

Prediction:
Non-Valid
Visibility graph



Non-Valid Visibility Graph





Valid polygon with F1 0.87 generated by VisDiff

Prediction: Valid Visibility graph

Valid Visibility Graph

Conclusion

- Demonstrated effectiveness of having an intermediate SDF representation which enhances the understanding of visibility relationships
 - VisDiff outperforms to the state of the art approaches on the visibility reconstruction task by 26% in terms of F-1 Score
- Showcased the capability of VisDiff to provide evidence for the visibility characterization and Recognition problem

Thank You!

24

References

- 1. Chen, Yiwen, Tong He, Di Huang, Weicai Ye, Sijin Chen, Jiaxiang Tang, Xin Chen et al. "Meshanything: Artist-created mesh generation with autoregressive transformers." *arXiv preprint arXiv:2406.10163* (2024).
- 2. Alliegro, Antonio, Yawar Siddiqui, Tatiana Tommasi, and Matthias Nießner. "Polydiff: Generating 3d polygonal meshes with diffusion models." *arXiv preprint arXiv:2312.11417* (2023).
- 3. Gao, Jianliang, Tengfei Lyu, Fan Xiong, Jianxin Wang, Weimao Ke, and Zhao Li. "MGNN: A multimodal graph neural network for predicting the survival of cancer patients." In *Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 1697-1700. 2020.
- 4. Harvey, William, Saeid Naderiparizi, and Frank Wood. "Conditional image generation by conditioning variational auto-encoders." *arXiv preprint arXiv:2102.12037* (2021).

