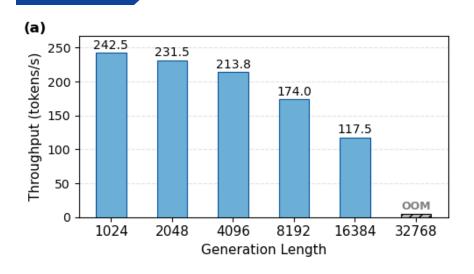
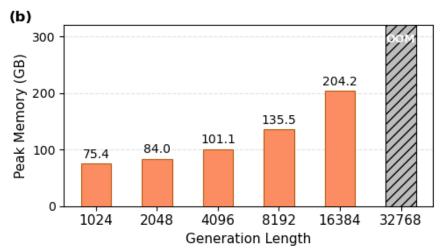


# Reasoning Path Compression: Compressing Generation Trajectories for Efficient LLM Reasoning

Jiwon Song<sup>1</sup>, Dongwon Jo<sup>1</sup>, Yulhwa Kim<sup>2\*</sup>, Jae-Joon Kim<sup>1\*</sup>


The Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS), 2024.




<sup>1</sup>Seoul National University, <sup>2</sup>Sungkyunkwan University, \*Corresponding Author



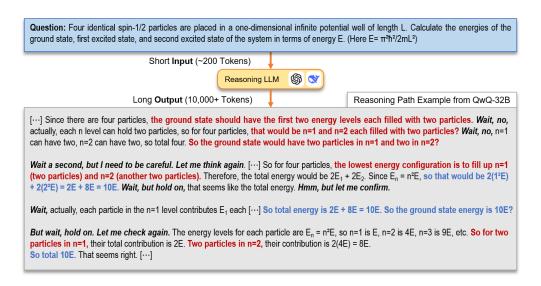
### **Motivation**

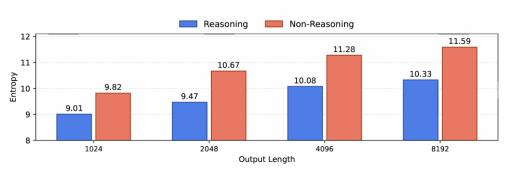




#### **Problem**

Reasoning LLM = Long Reasoning Path → *Huge KV Cache* 


Reasoning LLMs generate > 50K tokens for one answer KV cache → Major memory and throughput bottleneck


#### Goal

Compressing KV cache of generated tokens without retraining

*Inference-time compression* method for generated tokens

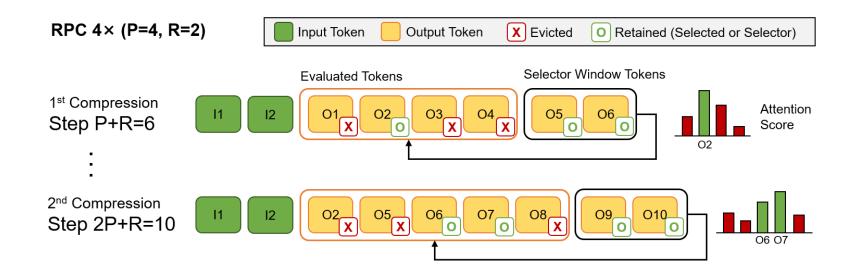
## **Observation: Semantic Sparsity**





#### Reasoning paths contain redundant logic and self-checks

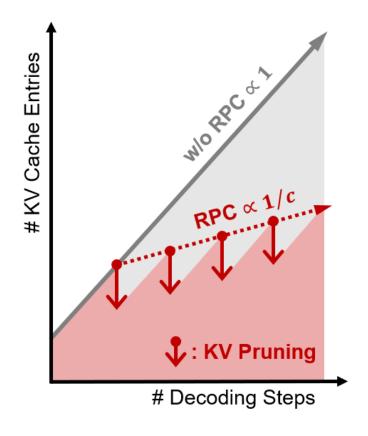
Low phrase-level entropy


Repetitive phrases and semantic overlap

#### **Define Semantic Sparsity**

Enables aggressive compression of KV cache




## **Method: Reasoning Path Compression**



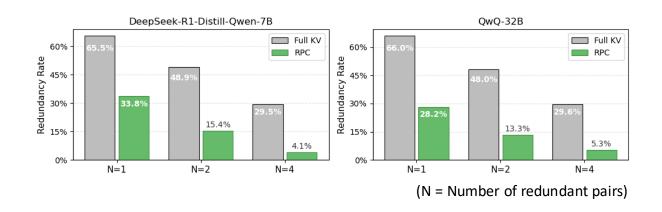
Reasoning Path Compression (RPC) = periodic KV cache compression during decoding
Uses attention-based importance from recent tokens (selector window)
Training-free / plug-in / model-agnostic



## **Periodic Compression Dynamics**



#### Compression period P, # Selector window tokens R, Target ratio c


Compression triggered every P tokens

Query states of R select window tokens used for importance scoring

NP/c + R KV entries retained after NP + R decoding steps Outdated, Unimportant tokens fade out  $\rightarrow$  Steady, compact context

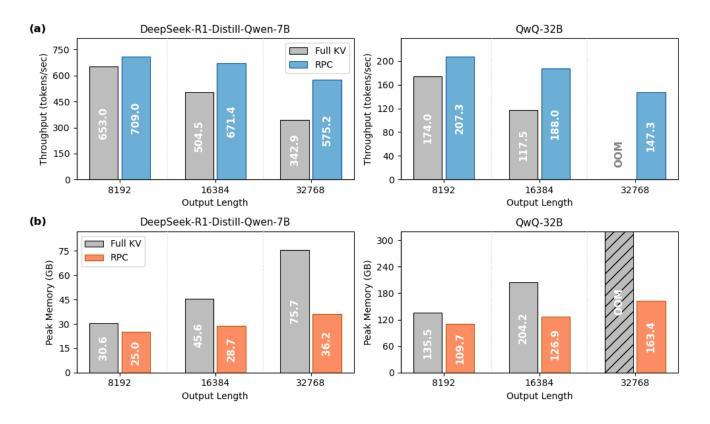


## Results: Redundancy Reduction and Accuracy



| Method                  | DeepSeek-R1-Distill-Qwen-7B |                           |                    | QwQ-32B               |                           |                    |
|-------------------------|-----------------------------|---------------------------|--------------------|-----------------------|---------------------------|--------------------|
|                         | AIME 2024<br>(pass@1)       | LiveCodeBench<br>(pass@1) | IFEval<br>(pass@1) | AIME 2024<br>(pass@1) | LiveCodeBench<br>(pass@1) | IFEval<br>(pass@1) |
| Full KV Cache           | 55.5                        | 37.6                      | 55.1               | 79.5                  | 63.4                      | 83.9               |
| H2O                     | 42.5                        | 22.5                      | 51.8               | 75.0                  | 54.2                      | 74.3               |
| TOVA                    | 42.5                        | 21.5                      | 48.8               | 70.0                  | 43.8                      | 50.6               |
| LightThinker            | 6.7                         | 0.7                       | 25.1               | -                     | -                         | -                  |
| <b>RPC</b> $(P = 4096)$ | 52.9                        | 35.9                      | 56.6               | 78.3                  | 62.2                      | 82.6               |
| <b>RPC</b> $(P = 1024)$ | 50.4                        | 33.5                      | 57.3               | 78.3                  | 61.2                      | 81.7               |

#### **RPC** reduces redundant sentence pairs


- Proportion of semantically redundant sentences decreased by over 50%
- Stronger effect with higher threshold (N=2,4)

#### Full KV cache level accuracy preserved

- Accuracy remains almost unchanged (≤1.2% drop on AIME 2024)
- Outperforms baselines by large margin



## **Results: Efficiency**



Throughput improvement up to 1.6× Gains amplify with model size and output length

Peak memory reduction up to 50%
Prevents OOM even for 32K + tokens reasoning

## **Conclusion & Takeaways**

#### **Key Idea**

Reasoning LLMs often generate redundant reasoning paths

→ Large KV Cache, Slow inference, High memory cost

RPC exploits semantic sparsity

→ Periodically removes low-importance KV entries w/o retraining and architecture change

#### **Main Results**

**4× KV Compression with redundancy reduction** 

Redundancy rate decreases by over 50%

Throughput ↑ 1.6×, memory  $\downarrow$  >50% with accuracy drop ≤ 1.2% (AIME24, QwQ-32B)

RPC leverages semantic sparsity for faster, lighter, and scalable reasoning