Near-Optimal Regret-Queue Length Tradeoff in Online Learning for Two-Sided Markets

Zixian Yang, University of Michigan, Ann Arbor zixian@umich.edu Joint work with Sushil Varma (Michigan) and Lei Ying (Michigan)

Two-Sided Markets

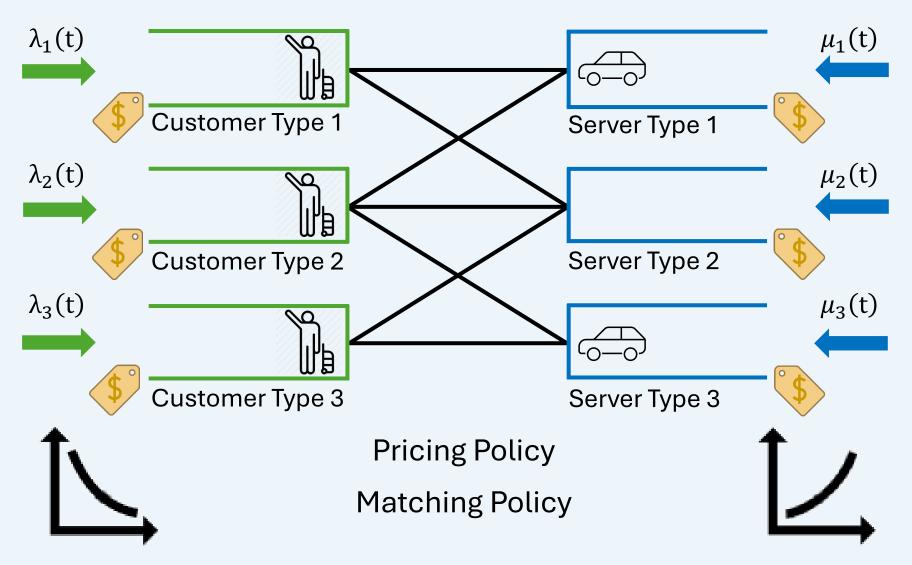
Ride-Hailing

Organ Donation

Meal/Grocery Delivery

Crowdsourcing

Model: Two-Sided Queues



Objectives

 \square Maximize $E\left[\sum_{t=1}^{T} \operatorname{Profit}(t)\right]$

Monotone assumption

 \square Minimize AvgQLen $(T) = \frac{1}{T} \sum_{t=1}^{T} E[\text{total-queue-length}(t)]$

Objectives

Question:

If the demand and supply functions are **unknown**, how should the platform do pricing and matching?

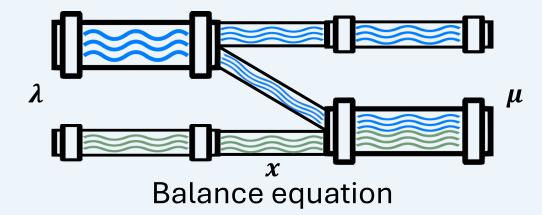
Fluid Baseline and Regret

☐ Fluid baseline [Varma et al., 2023]:

$$\max_{\lambda,\mu,x} E[\operatorname{Profit}(\lambda,\mu)]$$

A concave function of (λ, μ)

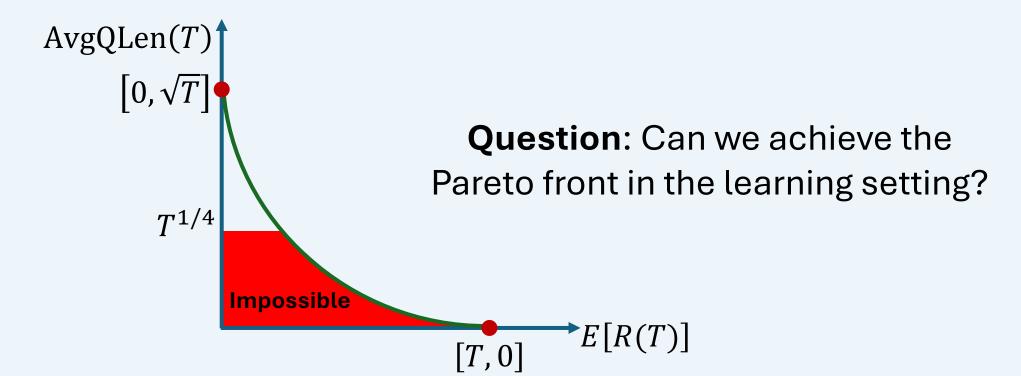
s.t.
$$\lambda_i = \sum_j x_{i,j}$$
, $\mu_j = \sum_i x_{i,j}$, $x_{i,j} \ge 0$, $\lambda_i, \mu_j \in [0, 1]$, for all i, j



- \square Regret: $E[R(T)] = T \times Profit^* E[\sum_{t=1}^{T} Profit(t)]$
- ☐ Minimize E[R(T)]Minimize AvgQLen $(T) = \frac{1}{T} \sum_{t=1}^{T} E[\text{total-queue-length}(t)]$

Fundamental Regret-Queue Length Tradeoff

□ A lower bound result [**Y** et al., 2025]: there exists a problem instance such that, for any policy in a large class of pricing policies, if $AvgQLen(T) \le T^{\gamma/2}$, $E[R(T)] = \Omega(T^{1-\gamma})$ for any $\gamma \in \left[0, \frac{1}{2}\right]$.



Results [Y et al., 2025]

 \square For any $\gamma \in \left[0, \frac{1}{6}\right]$, we have $E[R(T)] = \tilde{O}(T^{1-\gamma})$, $AvgQLen(T) = \tilde{O}\left(T^{\gamma/2}\right)$

