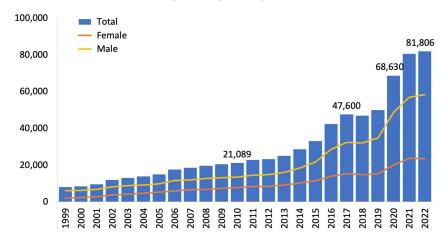
A Cautionary Tale on Integrating Studies with Disparate Outcome Measures for Causal Inference

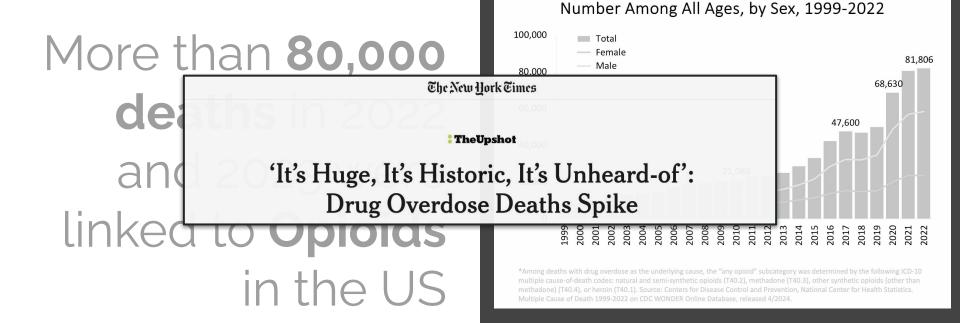
Harsh Parikh, Trang Nguyen, Elizabeth Stuart, Kara Rudolph, Caleb Miles

More than **80,000** deaths in 2022 and 2023 were linked to **Opioids** in the US

National Overdose Deaths Involving Any Opioid*, Number Among All Ages, by Sex, 1999-2022



*Among deaths with drug overdose as the underlying cause, the "any opioid" subcategory was determined by the following ICD-10 multiple cause-of-death codes: natural and semi-synthetic opioids [T40.2], methadone (T40.3), other synthetic opioids (other than methadone) [T40.4), or heroin [T40.1). Source: Centers for Disease Control and Prevention, National Center for Health Statistics. Multiple Cause of Death 1999-2022 on CDC WONDER Online Database, released 4/2024.



National Overdose Deaths Involving Any Opioid*,

Medication such as **Buprenorphine** & **Naltrexone** are used to treat OUD

Medication such as **Buprenorphine** & **Naltrexone** are used to treat OUD

Major challenge: **Severe** withdrawal symptoms

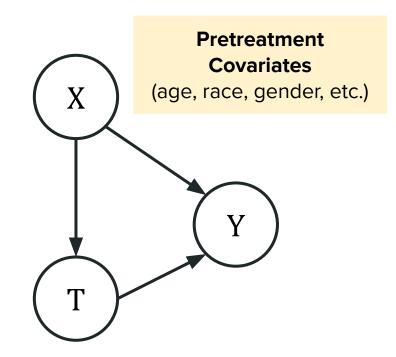
Medication such as **Buprenorphine** & **Naltrexone** are used to treat OUD

Major challenge: **Severe** withdrawal symptoms

Severity of **withdrawal** symptoms are *associated* with **OUD relapse**

Which of the medications for OUD result in least severe withdrawal symptoms?

Cohort Size: 540 patients

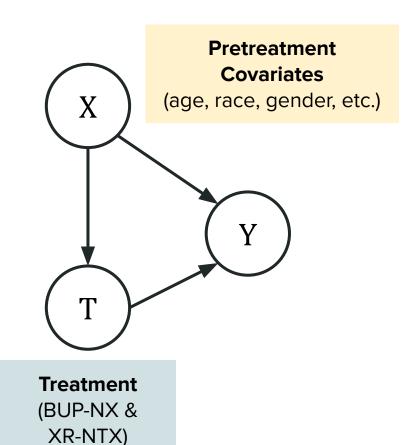


Cohort Size: 540 patients

Randomized (1:1) to receive:

T=0: Buprenorphine Naloxone (BUP-NX)

T=1: Extended Release Naltrexone (XR-NTX)



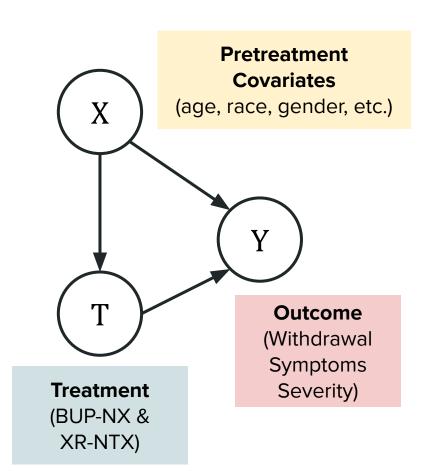
Cohort Size: 540 patients

Randomized (1:1) to receive:

T=0: Buprenorphine Naloxone (BUP-NX)

T=1: Extended Release Naltrexone (XR-NTX)

Outcome: Max. Subjective Opioid Withdrawal Scale (SOWS) Score b/w 10th and 14th Week



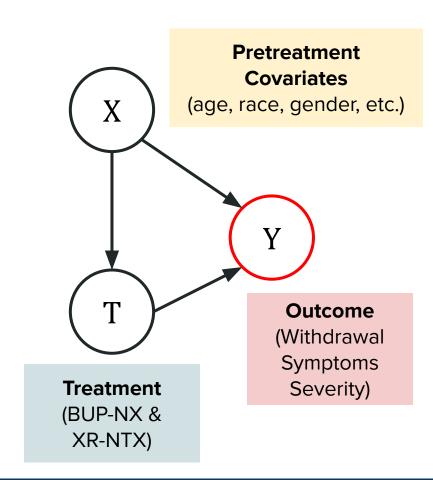
Cohort Size: 540 patients

Randomized (1:1) to receive:

T=0: Buprenorphine Naloxone (BUP-NX)

T=1: Extended Release Naltrexone (XR-NTX)

Outcome: Max. Subjective Opioid Withdrawal Scale (SOWS) Score b/w 10th and 14th Week



Cohort Size: 540 patients

Randomized (1:1) to receive:

T=0: Buprenorphine Naloxone (BUP-NX)

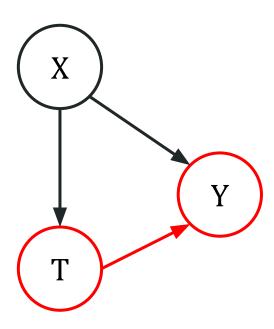
T=1: Extended Release Naltrexone (XR-NTX)

Outcome: Max. Subjective Opioid Withdrawal Scale (SOWS) Score b/w 10th and 14th Week

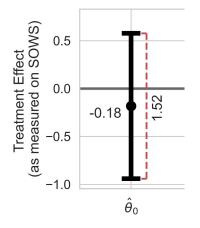
SOWS:

- Score measured using 16 symptoms such as nausea, vomiting, stomach cramp, etc.
- Ranges between 0 and64
- Higher means worse

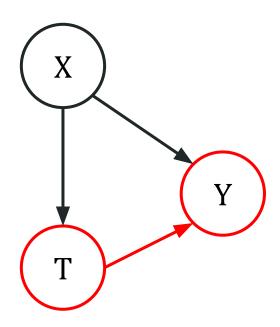
$$Y = \underbrace{\theta(X)}_{\text{Treatment}} T + \underbrace{g(X)}_{\text{Baseline}} + \gamma$$

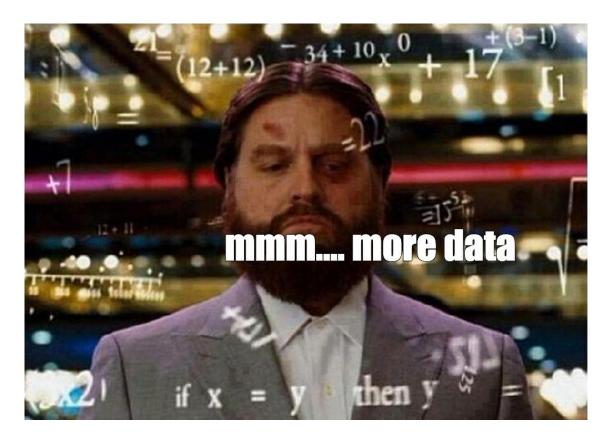


$$Y = \underbrace{\theta(X)}_{\text{Treatment}} T + \underbrace{g(X)}_{\text{Baseline}} + \gamma$$



XR-NTX on-par with BUP-NX





Oh, we have another dataset!

POATS Study

Cohort Size: 360 patients

Treatment:

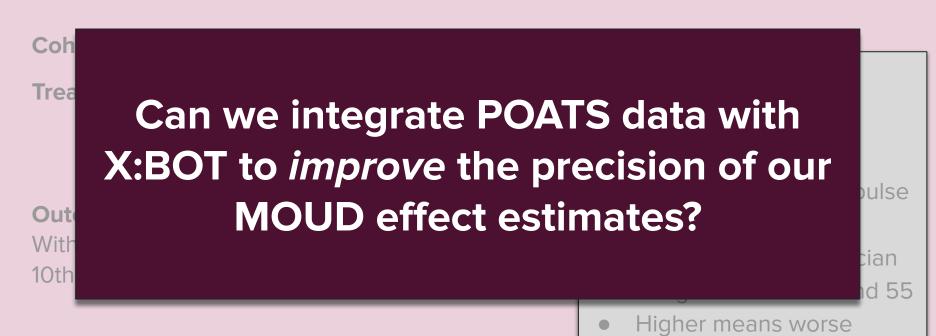
T=0: Buprenorphine Naloxone (BUP-NX)

Outcome: Max. Clinical Opiate Withdrawal Scale (COWS) Score b/w 10th and 14th Week

COWS:

- Measured using 11
 symptoms such as
 sweating, pupil size, pulse
 rate, etc.
- Administered by clinician
- Ranges between 0 and 55
- Higher means worse

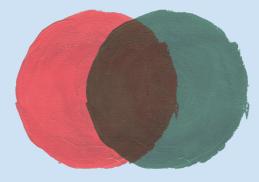
POATS Study



Why Integrate Data Across Studies? 🧐

Data Integration & Causal Inference

 Combining datasets often collected under different study designs [Bariembom and Pearl (2016)]

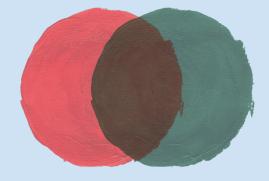


Data Integration & Causal Inference

 Combining datasets often collected under different study designs [Bariembom and Pearl (2016)]

Goals:

- Generalizability [Stuart et al (2011)]
- Transportability [Pearl et al (2011)]
- Efficiency Gain [Yang et al (2020)]
- Bias/Error Correction [Kallus et al (2018), Parikh et al. (2024)]

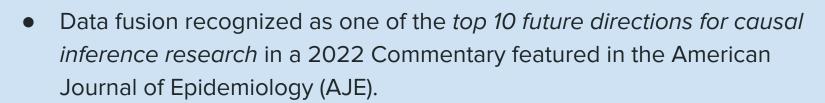


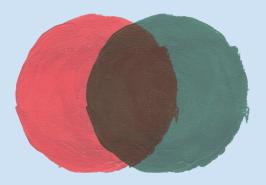
Data Integration & Causal Inference

 Combining datasets often collected under different study designs [Bariembom and Pearl (2016)]

Goals:

- Generalizability [Stuart et al (2011)]
- Transportability [Pearl et al (2011)]
- Efficiency Gain [Yang et al (2020)]
- Bias/Error Correction [Kallus et al (2018), Parikh et al. (2024)]





Data Integration for Efficiency Gain

Primary

ary

unit-id	X ₁	•••	X _p	Т	Y
1	x ₁₁		X _{1p}	t ₁	y ₁
2	X ₂₁		X _{2p}	t ₂	y ₂
n _o					

unit-id	X ₁	 X _p	Т	Y
n ₀ +1	X _{n0 + 1, 1}	 X _{n0+1,p}	t _{n0+1}	y _{n0+1}
n ₀ + n ₁		 		

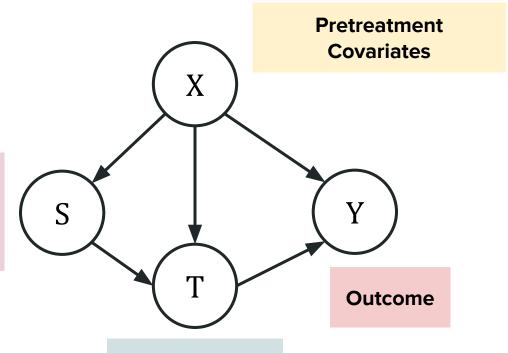
Notations

Sample Indicator

e.g.,

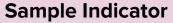
S=0 Primary

S=1 Auxiliary



Treatment

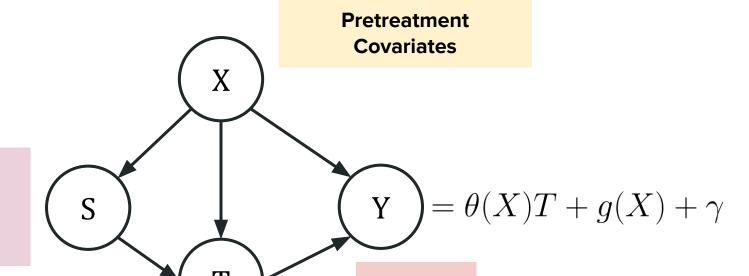
Notations



e.g.,

S=0 Primary

S=1 Auxiliary



Outcome

Treatment

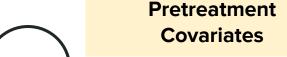
Estimand of Interest

Sample Indicator

e.g.,

S=0 Primary

S=1 Auxiliary



Outcome

Treatment

 $\hat{\theta}_{D_0}$: Estimator using only Primary Data

 $\hat{\theta}_{D_0}$: Estimator using only Primary Data

Quantifying Uncertainty: $\mathbb{E}[(\hat{\theta}_{D_0} - \theta)^2] = Var(\hat{\theta}_{D_0})$

 $\hat{\theta}_{D_0}$: Estimator using only Primary Data

Quantifying Uncertainty: $\mathbb{E}[(\hat{\theta}_{D_0} - \theta)^2] = Var(\hat{\theta}_{D_0})$

Efficient Estimator: $\hat{\theta}_{D_0}$ such that $Var(\hat{\theta}_{D_0})$ is smallest

 $\hat{\theta}_{D_0}$: Estimator using only Primary Data

Quantifying Uncertainty: $\mathbb{E}[(\hat{\theta}_{D_0} - \theta)^2] = Var(\hat{\theta}_{D_0})$

Efficient Estimator: $\hat{\theta}_{D_0}$ such that $Var(\hat{\theta}_{D_0})$ is smallest

 $\hat{\theta}_{D_0 \bigoplus D_1}$: Efficient Estimator using both Primary and Auxiliary data

 $\hat{\theta}_{D_0}$: Estimator using only Primary Data

Quantifying Uncertainty: $\mathbb{E}[(\hat{\theta}_{D_0} - \theta)^2] = Var(\hat{\theta}_{D_0})$

Efficient Estimator: $\hat{\theta}_{D_0}$ such that $Var(\hat{\theta}_{D_0})$ is smallest

 $\hat{\theta}_{D_0 \bigoplus D_1}$: Efficient Estimator using both Primary and Auxiliary data

Consider the efficient estimator $\hat{\theta}_{D_0}$ and $\hat{\theta}_{D_0} \oplus D_1$

 $\hat{\theta}_{D_0}$: Estimator using only Primary Data

Quantifying Uncertainty: $\mathbb{E}[(\hat{\theta}_{D_0} - \theta)^2] = Var(\hat{\theta}_{D_0})$

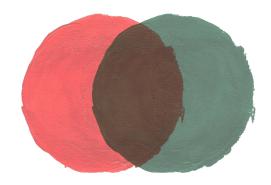
Efficient Estimator: $\hat{\theta}_{D_0}$ such that $Var(\hat{\theta}_{D_0})$ is smallest

 $\hat{\theta}_{D_0 \bigoplus D_1}$: Efficient Estimator using both Primary and Auxiliary data

Consider the efficient estimator $\hat{\theta}_{D_0}$ and $\hat{\theta}_{D_0} \bigoplus D_1$

Efficiency Gain : $Var(\hat{\theta}_{D_0 \bigoplus D_1}) < Var(\hat{\theta}_{D_0})$

But we have Disparate Outcomes Measures 😏



Studies with Disparate Outcome Measure

Primary

unit-id	X ₁	•••	X _p	Т	Y	W
1	X ₁₁		X _{1p}	t ₁	У ₁	?
2	X ₂₁		X _{2p}	t ₂	y ₂	?
						?
n _o					•••	?

Auxiliary

unit-id	X ₁	 X _p	Т	Y	W
n ₀ +1	X _{n0 + 1, 1}	 X _{n0+1,p}	t _{n0+1}	?	w _{n0+1}
		 		?	
n ₀ + n ₁		 		?	

Some Related Literature

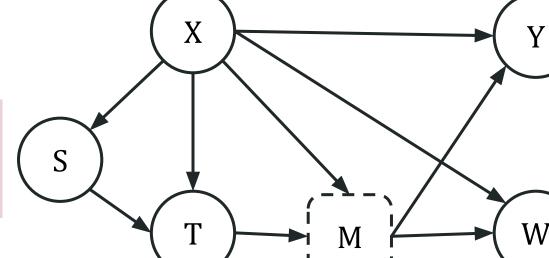
- Estimating Long-term Treatment Effects
 - Athey et al (2019), Ghassami et al. (2022)
- Leveraging Surrogate / Proxy Outcomes
 - Wang et al. (2020)
- Correcting for Measurement Errors
 - Ross et al. (2024)
- Meta Learning with Disparate Outcomes
 - Deeks et al. (2019)

Notations & Assumptions

Sample Indicator

e.g., S=0 Primary S=1 Auxiliary Pretreatment Covariates

e.g., age, race, gender



Primary Outcome

Auxiliary Outcome

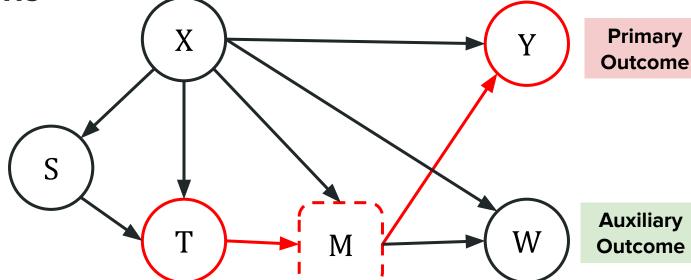
Treatment

Latent Outcome

Notations & Assumptions

Pretreatment Covariates

e.g., age, race, gender



Sample Indicator

e.g.,

S=0 Primary

S=1 Auxiliary

Treatment

Latent Outcome

Structural Assumptions

$$Y = \theta(X)T + g(X) + \gamma$$
$$W = \phi(X)T + f(X) + \delta$$

Estimand of Interest

$$Y = \theta(X)T + g(X) + \gamma$$
$$W = \phi(X)T + f(X) + \delta$$

Recall:

$$Y = \theta(X)T + g(X) + \gamma$$
$$W = \phi(X)T + f(X) + \delta$$

Q: If and when can leveraging auxiliary data with disparate outcome measure yield efficiency gain?

$$Y = \theta(X)T + g(X) + \gamma$$
$$W = \phi(X)T + f(X) + \delta$$

$$\mathbb{E}[Y \mid X] = \alpha(X)\mathbb{E}[W \mid X] + \beta(X)$$

$$Y = \theta(X)T + g(X) + \gamma$$
$$W = \phi(X)T + f(X) + \delta$$

$$\mathbb{E}[Y \mid X] = \alpha(X)\mathbb{E}[W \mid X] + \beta(X)$$

Assumptions (from strongest to weakest)

$$Y = \theta(X)T + g(X) + \gamma$$
$$W = \phi(X)T + f(X) + \delta$$

$$\mathbb{E}[Y \mid X] = \alpha(X)\mathbb{E}[W \mid X] + \beta(X)$$

Assumptions (from strongest to weakest) A.a. α and β are a priori known Biochemical systems with substantial prior research. Mechanistic parameters connecting intermediate and long term outcomes

$$Y = \theta(X)T + g(X) + \gamma$$
$$W = \phi(X)T + f(X) + \delta$$

$$\mathbb{E}[Y \mid X] = \alpha(X)\mathbb{E}[W \mid X] + \beta(X)$$

Assumptions (from strongest to weakest)

A.a. α and β are a priori known

A.b. only β is a priori is known; α unknown

Medical outcomes measured using different scales. Baseline levels are well-known (typically zero). Heterogeneous scaling factors (α) often unknown.

$$Y = \theta(X)T + g(X) + \gamma$$
$$W = \phi(X)T + f(X) + \delta$$

$$\mathbb{E}[Y \mid X] = \alpha(X)\mathbb{E}[W \mid X] + \beta(X)$$

Assumptions (from strongest to weakest)

A.a. α and β are a priori known

A.b. only β is a priori is known; α unknown

A.c. both α and β unknown

Almost every other scenario!

Theoretical Findings

$$Var(\hat{ heta}_0) = Var(\hat{ heta}_c) pprox Var(\hat{ heta}_b) > Var(\hat{ heta}_a)$$

$$\mathbb{E}[Y \mid X] = \alpha(X)\mathbb{E}[W \mid X] + \beta(X)$$

Assumptions (from strongest to weakest)

A.a. α and β are a priori known

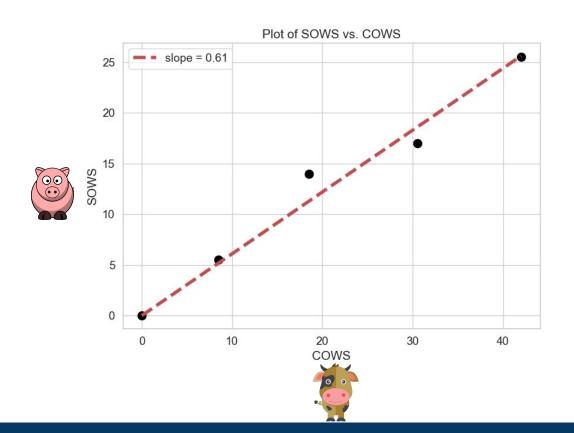
A.b. only β is a priori is known; α unknown

A.c. both α and β unknown

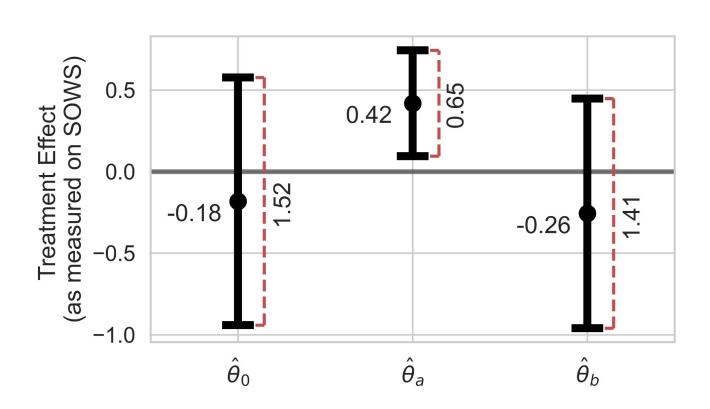
X:BOT POATS

MOUD → Withdrawal Symptoms

COWS v/s SOWS (Building on domain knowledge)



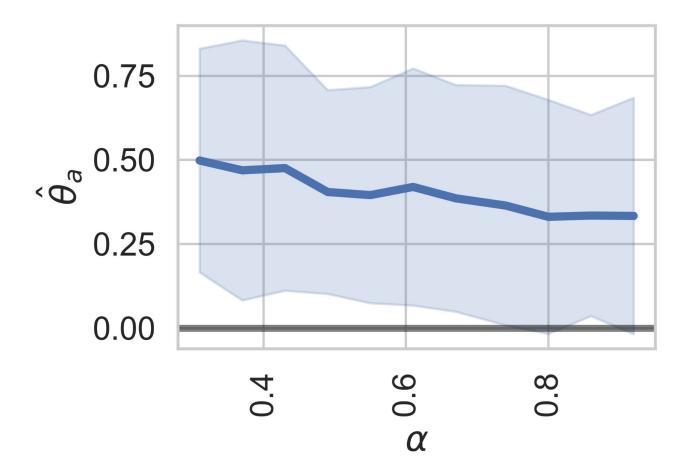
X:BOT POATS



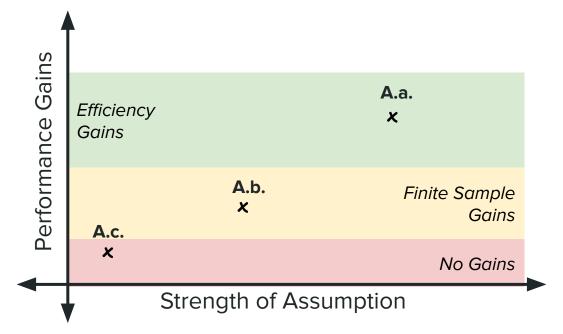
What if we assume A.a. but our guess of $\alpha(X)$ is wrong?

What if we assume A.a. but our guess of α(X) is wrong?

$$Bias = \mathbb{E}[\left(lpha_{mis.}(X) - lpha_{true}(X)
ight)\phi(X)]$$



ď



$$\mathbb{E}[Y \mid X] = \alpha(X)\mathbb{E}[W \mid X] + \beta(X)$$

Assumptions (from strongest to weakest)

A.a. α and β are a priori known

A.b. only β is a priori is known; α unknown

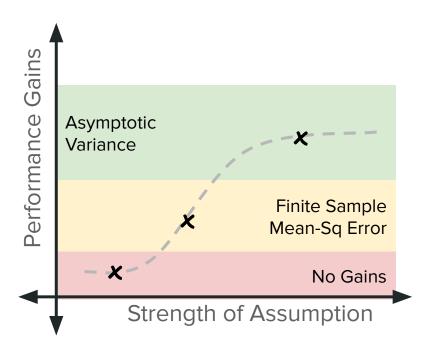
A.c. both α and β unknown

Q: Does Leveraging Auxiliary Study with Disparate Outcome yields Efficiency Gains?

A: It depends on

- Access to background knowledge
- Assumptions one is willing to make
 - Risk of bias due to misspecification

>> There is no free lunch



Thank you!