Solver-Informed Reinforcement Learning

Yitian Chen, jingfan Xia, Siyu Shao, Dongdong Ge, Yinyu Ye

Solver-Informed Reinforcement Learning

Large Reasoning Models (LRMs) are AI models with extensive parameters and advanced logical reasoning capabilities.

Beyond Human-Level Performance

Mathematical proofs · Code generation · STEM competitions

High-Value Application Scenarios

Medical diagnosis · Industrial optimization · Scientific research · Complex decision systems

Reasoning model for optimization modeling

We introduce the first reasoning model for mathematical modeling: **SIRL-Qwen2.5-7B**.

1. **Reasoning Paradigm**: Reasoning \rightarrow Modeling \rightarrow Code generation.

- Data Synthesis: Seed data + a precisely designed synthesis framework for model distillation, enabling access to high-quality reinforcement learning training data.
- Training Framework: Reinforcement Learning with Verifiable Reward (RLVR)-- propose a novel surrogate function design that bridging GRPO(Deepseek) and DAPO(ByteDance).

Reasoning Paradigm: System Prompt

The system prompt guides the LLM through a sequential process: first asking it to analyze the problem; then to formulate a mathematical model; and finally to output the corresponding solver codes.

System Prompt

SYSTEM: You are a helpful Assistant with expertise in operations research and the COPT solver. When the User provides an OR question, you will analyze it, build a detailed mathematical model, and provide the COPT code to solve it.

Your response should follow these steps:

- 1. <think> Carefully analyze the problem to identify decision variables, objective, and constraints.
- 2. <model> Develop a complete mathematical model, explicitly defining: * Sets * Parameters * Decision Variables (and their types) * Objective Function * Constraints </model>
- 3. <python> Provide the corresponding COPT Python code to implement the model. </python> The output must be in Markdown format, with each step enclosed in the specified tags.

USER: Answer the following mathematical modeling question:

{{Question}}

Please think step by step.

Reasoning Paradigm: Generated Response

Tire Transportation Linear Programming Problem

Thinking

To solve this problem, we need to clarify the decision variables, objective function and constraint conditions:

1. Decision Variables:

- Let x be the number of airplane transportation trips
- Let y be the number of truck transportation trips

2. Objective Function:

We need to minimize the total transportation trips: x + y

3. Constraint Conditions:

- The total quantity of tire transportation must reach at least 200 pieces: 10x + 6y ≥ 200
- Total transportation cost cannot exceed \$22000: 1000x + 700y ≤ 22000
- Airplane transportation trips cannot exceed truck transportation trips: x ≤ y
- Non-negativity constraints: x ≥ 0, y ≥ 0

This problem conforms to linear constraint characteristics, we can use linear programming method to solve it.

- Think

Modeling

Sets

. This problem is a simple linear programming problem, therefore no need to define sets

Model Parameters

- Single airplane transportation quantity: 10
- Single airplane transportation cost: \$1000
- Single truck transportation quantity: 6
- Single truck transportation cost: \$700

Decision Variables

- x: Number of airplane transportation trips
- y: Number of truck transportation trips

Objective Function

Minimize total transportation trips: x + y

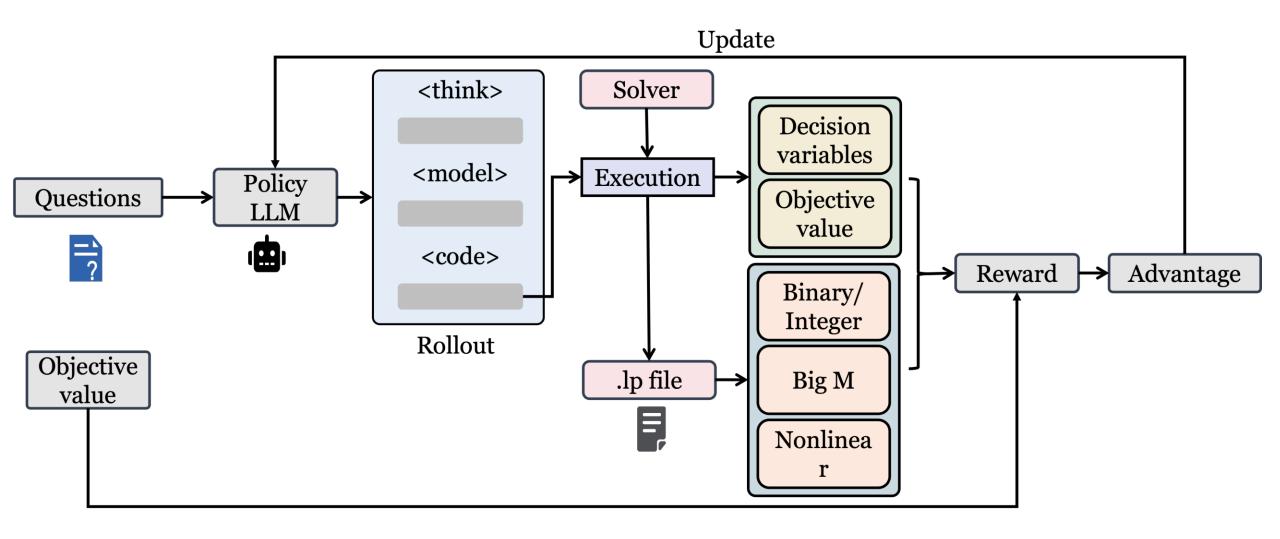
Constraint Conditions

- 1. $10x + 6y \ge 200$
- 2. 1000x + 700y ≤ 22000
- 3. x ≤ y
- 4. x ≥ 0, y ≥ 0

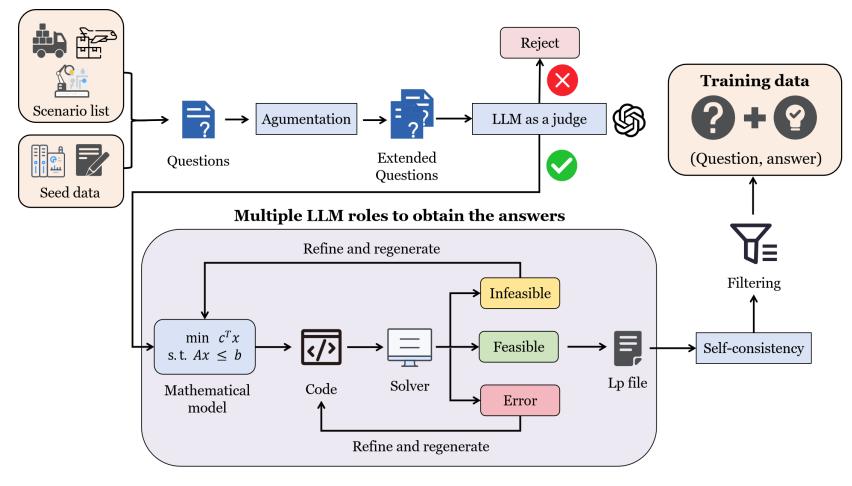
Python Code Implementation

```
import coptpy as cp
from coptpy import COPT
### Create new model
config = cp.Envr()
env = cp.Envr(config)
m = env.createModel("tire transport")
### Decision variable definition
x = m.addVar(name="x", vtype=COPT.INTEGER) # Number of airplane
transportation trips
y = m.addVar(name="y", vtype=COPT.INTEGER) # Number of truck transportation
### Objective function setting
m.setObjective(x + y, COPT.MINIMIZE)
### Constraint condition construction
m.addConstr(10 * x + 6 * y >= 200, "tire_constraint")
m.addConstr(1000 * x + 700 * y <= 22000, "cost_constraint")
m.addConstr(x - y <= 0, "trip_constraint")</pre>
### Model solving
m.solve()
### Result output
if m.status == COPT.OPTIMAL:
    print(f"Optimal solution found:")
    print(f"Plane trips: {x.x}")
    print(f"Truck trips: {y.x}")
    print(f"Total trips: {x.x + y.x}")
    print(f"Total cost: ${m.objVal}")
    print("No optimal solution found.")
```

SIRL: RL training framework overall

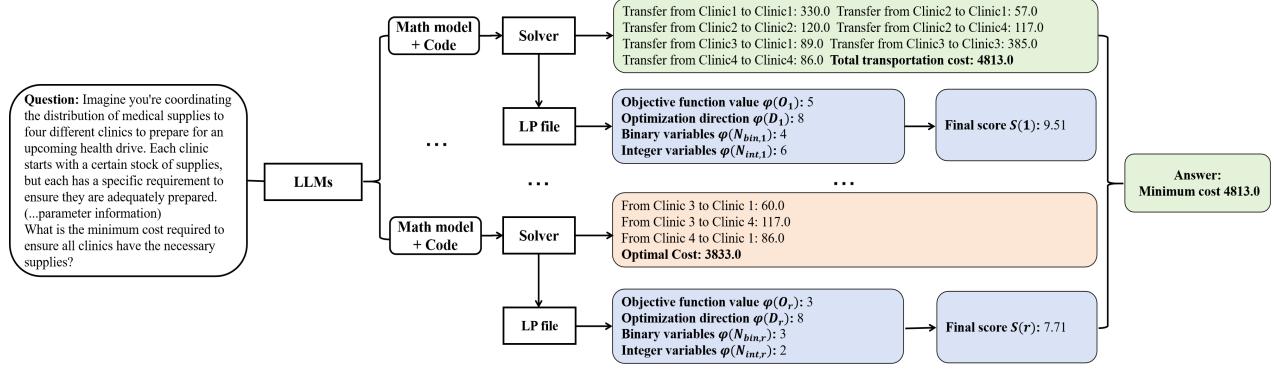


Data Synthesis: Overall Framework



- "LLM as a judge" validates the generated problems.
- An iterative reflection and refinement process is employed to address execution issues.
- Multiple LLM roles (10 roles) per problem for self-consistency.

Data Synthesis: Instance-Enhanced Self-Consistency



- Instance-Enhanced Self-Consistency (I-ESC): Incorporates structural metadata from generated LP files (e.g., objective value, direction, binary/integer variable counts) to enforce consensus.
- Complexity Expansion: Systematically enhances the dataset's coverage of complex and challenging problems.

Surrogate Function Design: Partial KL

Three distinct surrogate function designs:

- **1. Full KL:** the standard approach applying full KL-divergence regularization against the reference policy: PPO, Reinforce++;
- 2. Without KL: an approach omitting KL-divergence regularization, which is popular in RLVR training for mathematical problems: DAPO;
- 3. Partial KL: our novel design that applies the KL penalty selectively to the mathematical formulation and code segments.

Partial KL employs selective KL regularization, serving a dual purpose:

- **1. Exploration:** KL regularization is omitted for early reasoning steps (z^1, \ldots, z^{m-2}), promoting exploration and the identification of diverse problem structures.
- **2. Stability:** For critical modeling z^{m-1} and code generation z^m segments, KL regularization ensures well-structured output and prevents policy collapse, facilitating stable, reward-driven improvement.

Surrogate Function Design: Partial KL

Reasoning paradigm: the system prompt guides the reasoning response generation into *m* distinct segments:

- $(z^1, ..., z^{m-2})$: Initial reasoning and problem analysis segments.
- z^{m-1} : modeling formulation segment.
- z^m: executable codes segment.

The final output y is generated by executing the code segment z^m using the deterministic execution function g, resulting in y = g(x, z).

Partial KL surrogate function design: selectively applies the KL penalty to the mathematical formulation \mathbf{z}^{m-1} and solver code \mathbf{z}^m segments. The value for the KL term, $\mathsf{KL}(j,t)$, within these segments is computed using the unbiased estimator described in [17]:

$$\mathsf{KL}(j,t) = \begin{cases} \frac{\pi_{\theta}(\mathbf{z}_t | \mathbf{x}, \mathbf{z}^{< j})}{\pi_{\theta_{\mathsf{old}}}(\mathbf{z}_t | \mathbf{x}, \mathbf{z}^{< j})} - \log \frac{\pi_{\theta}(\mathbf{z}_t | \mathbf{x}, \mathbf{z}^{< j})}{\pi_{\theta_{\mathsf{old}}}(\mathbf{z}_t | \mathbf{x}, \mathbf{z}^{< j})} - 1 & j \in \{m-1, m\}, \\ 0 & \mathsf{otherwise}. \end{cases}$$

Reward Design: Two-Stage, Rule-Based Mechanism

the two-stage reward function $r(x, \mathbf{z}, y^*)$ is defined as follows:

$$r(x, \mathbf{z}, y^*) = \begin{cases} R_{\text{format}}(\mathbf{z}) + R_{\text{exec}}(\mathbf{z}) + R_{\text{accur}}(x, \mathbf{z}, y^*) & \text{Stage-1,} \\ R_{\text{format}}(\mathbf{z}) + R_{\text{exec}}(\mathbf{z}) + R_{\text{accur}}(x, \mathbf{z}, y^*) + R_{\text{bonus}}(x, \mathbf{z}, y^*) & \text{Stage-2.} \end{cases}$$

- 1. Stage-1 focuses on building fundamental skills for standard optimization problem formulation and solving.
- **2. Stage-2** aims to address more complex problems by using a bonus reward R_{bonus} based on the generated mathematical model to encourage advanced modeling techniques (e.g., Big-M, nonlinear).

Main Results

Table: Performance comparison of models on benchmarks.

Types	M - J - 1 -	Acc (pass@1)					Marana AMC
	Models	NL4OPT	MAMO Easy	MAMO Complex	IndustryOR	OptMATH	– Macro AVG
Baseline	GPT-4 DeepSeek-V3.1	89.0%* 84.8%	87.3%* 88.9%	49.3%* 63.5%	33.0%* 44.0%	16.6%* 43.9%	55.0%* 65.0%
LRMs	DeepSeek-R1 OpenAI-o3	82.4% 69.4%	87.2% 77.1%	67.9% 51.2%	45.0% 44.0%	40.4% 44.0%	64.6% 57.1%
Agent-based	OptiMUS	78.8%*	77.2%*	43.6%*	31.0%*	20.2%*	49.4%*
Offline-learning	ORLM-LLaMA-3-8B LLMOpt-Qwen2.5-14B OptMATH-Qwen2.5-7B OptMATH-Qwen2.5-32B	85.7%* 80.3%* 94.7%* 95.9%*	82.3%* 89.5%* 86.5%* 89.9%*	37.4%* 44.1%* 51.2%* 54.1%*	24.0%* 29.0%* 20.0%* 31.0%*	2.6%* 12.5%* 24.4%* 34.7%*	46.4% 51.1% 55.4% 61.1%
Online-RL	SIRL-Qwen2.5-7B SIRL-Qwen2.5-32B	96.3% 98.0 %	91.7% 94.6%	51.7% 61.1%	33.0% 42.0%	30.5% 45.8%	60.6% 68.3 %

Values marked with * are from original or reproduced papers with the criterion: relative error $< 10^{-6}$.

- 1. Our SIRL-7B Our SIRL-7B model consistently and significantly outperforms all other 7B and 14B offline learning models.
- 2. Furthermore, our 32B model surpasses the Macro Average of much larger models, including the 671B Deepseek-V3.1 and leading reasoning models like DeepSeek-R1 and OpenAI-o3.

Surrogate Function Design: Ablation Study

Table: Ablation study on different surrogate function designs.

MAMO Complex		Complex	IndustryOR		OptMATH	
Туре	Acc(pass@1)	ER	Acc(pass@1)	ER	Acc(pass@1)	ER
Partial KL	51.7%	98.1%	33.0%	96.0%	30.5%	92.2%
Full KL Without KL	48.3%(\\dagger3.4%) 47.3%(\\dagger4.4%)	98.5%(\(\daggered{\gamma}0.4\)%) 95.6%(\(\daggered{\gamma}2.5\)%)	30%(↓3.0%) 29%(↓4.0%)	95.0%(\\d\1.0\%) 87.0%(\\d\9.0\%)	$28.3\%(\downarrow 2.2\%)$ $29.5\%(\downarrow 1.0\%)$	93.4%(†1.2%) 80.1%(\dagger12.1%)

This table reports both pass@1 accuracy and execution rate (ER), which measures the percentage of generated solutions that successfully compile and return a valid result.

Full KL: the standard approach applying full KL-divergence regularization against the reference policy;

Without KL: an approach omitting KL-divergence regularization, which is popular in RLVR training for mathematical problems such as AIME;

Partial KL: our novel design that applies the KL penalty selectively to the mathematical formulation and code segments.

Case Study: Execution Error Under Without KL Strategy

1. Omitting the KL divergence in the code component leads to **execution errors**.

2. The response from the Without KL model attempts to enforce that decision variables are greater than zero, but the **implemented code is non-functional** since ' >' not supported between instances of ' Var' and ' int'.

Case Study 1: Question instance from the IndustryOR dataset

A product can be processed on any one of the four devices: A, B, C, or D. The preparation completion costs when each device is enabled, the unit production cost for the product, and the maximum processing capacity of each device are shown in Table 5-7. If 2000 units of the product need to be produced, how can the total cost be minimized? Try to establish a mathematical model.

Table 5-7 Device, Prep Completion Cost (Yuan), Unit Production Cost (Yuan/Unit), Maximum Processing Capacity (Units) A,1000,20,900 B,920,24,1000 C,800,16,1200 D,700,28,1600

Case Study 1: Generated response under the Without KL strategy

```
<python>
import coptpy as cp
from coptpy import COPT
# Define the model
config = cp.Envr()
env = cp.Envr(config)
model = env.createModel("Product_Optimization")
# Parameters
completion_cost = {"A": 1000, "B": 920, "C": 800, "D": 700}
production_cost = {"A": 20, "B": 24, "C": 16, "D": 28}
max_processing_capacity = {"A": 900, "B": 1000, "C": 1200, "D": 1600}
# Decision variables
x = \{ \}
for i in completion_cost.keys():
x[i] = model.addVar(name=i, lb=0, ub=max_processing_capacity[i], vtype=COPT.CONTINUOUS)
# Objective function
model.setObjective(cp.quicksum(completion\_cost[i]*(x[i]>0) + production\_cost[i]*x[i] for i in com-
pletion_cost.keys()), COPT.MINIMIZE)
# Constraints
model.addConstr(cp.quicksum(x[i] for i in completion_cost.keys()) == 2000, "Total_Production")
# Optimize the model
model.solve()
# Print the solution
if model.status == COPT.OPTIMAL:
print("Optimal Solution:")
for i in completion_cost.keys():
print(f"Device i: \{x[i].x\}")
print(f"Total Cost: model.objVal")
print("No optimal solution found.")
</python>
```

Two-Stage Reward Mechanism: Ablation Study

Table: Performance results of the ablation study on reward design.

Dayword Type	Acc (pass@1)					
Reward Type	NL4OPT	MAMO Easy	MAMO Complex	IndustryOR	OptMATH	
Two-stage rewards	96.3%	91.7%	51.7%	33.0%	30.5%	
Stage-1 reward only Stage-2 reward only	96.7% (†0.4%) 92.2% (↓4.1%)	88.8% (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	46.8% (\\d\dagger{4.9\%}) 49.3% (\\dagger{2.4\%})	27.0% (\\dagger{6.0%}) 28.0% (\\dagger{5.0%})	28.9% (\1.6%) 33.1% (\2.6%)	

- **1. Stage-1 reward** yielded strong performance on NL4OPT, indicating effective learning of fundamental optimization skills.
- 2. While **stage-2 reward** optimized OptMATH via advanced strategies, it negatively impacted simpler NL4OPT performance.
- 3. The **combined two-stage reward** successfully balanced learning objectives, outperforming single-stage rewards across most tasks by resolving inherent trade-offs.

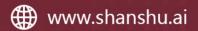
SIRL: Summary

- 1. Contribution/Novelty: We introduce the first domain-specific reasoning model for optimization modeling, establishing the initial application of RLVR (Reinforcement Learning with Variable Reasoning) for LLMs in this domain.
- 2. Performance: Our 32B model achieves a higher Macro Average than much larger models, surpassing the 671B Deepseek-V3.1 and leading reasoning models (e.g., DeepSeek-R1, OpenAl-o3).
- **3. Technical Innovation :** We propose a Partial KL-based surrogate function design for LLMs in optimization modeling, significantly boosting both confidence and accuracy across optimization tasks.

Github	https://github.com/Cardinal-Operations/SIRL
Huggingface	https://huggingface.co/chenyitian-shanshu/SIRL
Modelscope	https://modelscope.cn/models/oneday88/SIRL-7B

THANKS -

& 400-680-5680



Shanshu@shanshu.ai