

Miss-ReID: Delivering Robust Multi-Modality Object Re-Identification Despite Missing Modalities

Ruida Xi

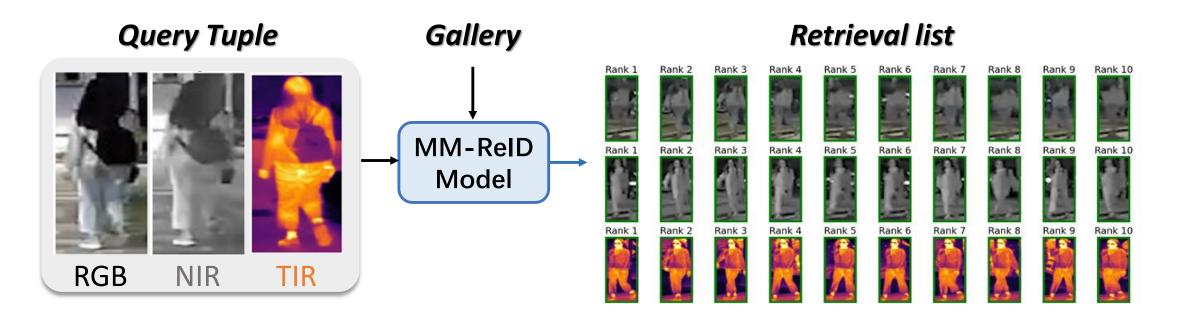
State Key Laboratory of Electromechanical Integrated

Manufacturing of High-Performance Electronic Equipment, Xidian University

Paper: https://nips.cc/virtual/2025/poster/119663

Background

Multi-Modality Object Re-Identification



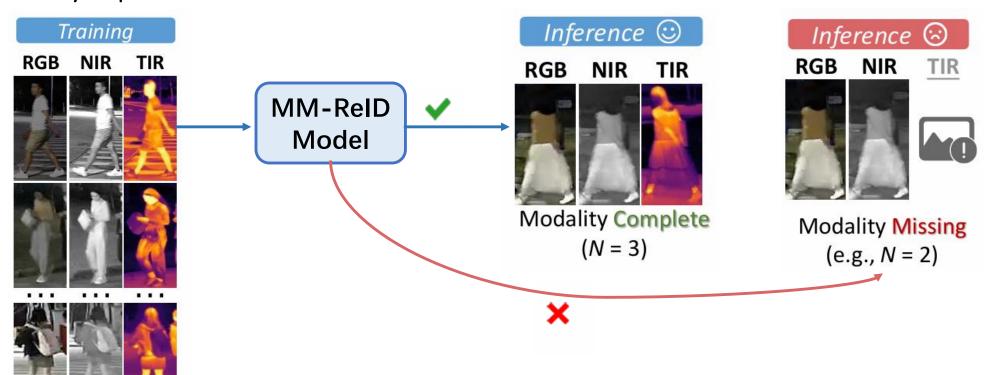
Multi-modality object Re-IDentification (ReID) targets to retrieve special objects by integrating complementary information from diverse visual sources.

[1] Wang Y, Liu Y, Zheng A, et al. Decoupled feature-based mixture of experts for multi-modal object re-identification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2025, 39(8): 8141-8149.

Problem

Modality Complete (N = 3)

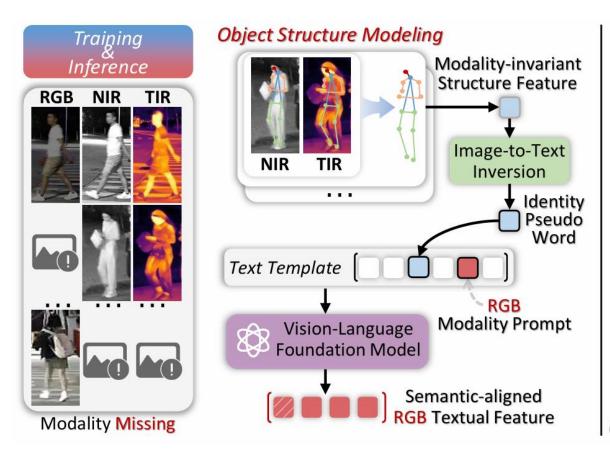
Though exhibiting promising performance, existing multi-modality ReID methods typically rely on an assumption regarding the modality completeness, which may not hold in practice owing to privacy protections, sensor failures or security requirements.

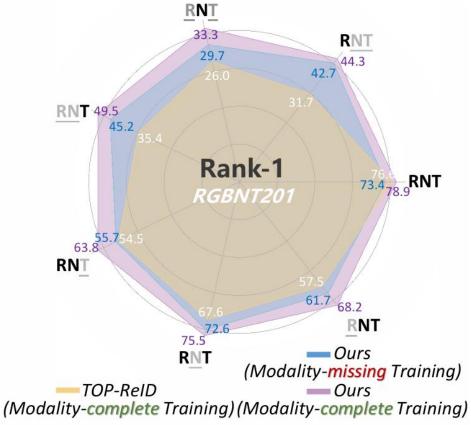


■ Existing models trained on modality-complete datasets typically exhibit significantly degraded discrimination during inference with modality-incomplete inputs.

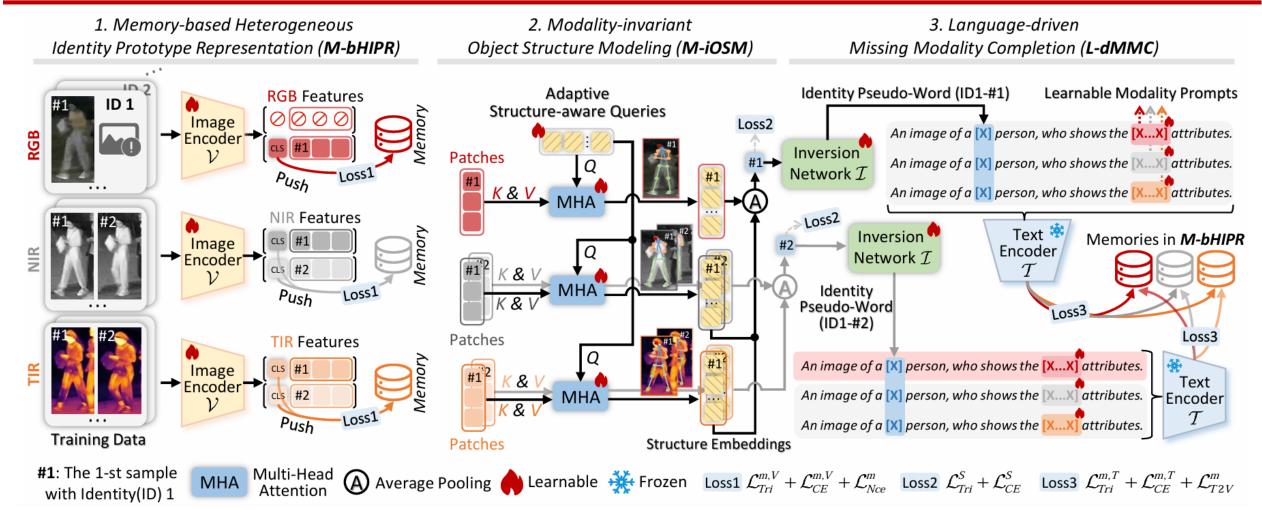
Motivation

> By harnessing VLMs' open-world vision-text alignment, text-derived semantic features may effectively compensate for incomplete visual information, enabling robust solutions for modality-missing training and inference.





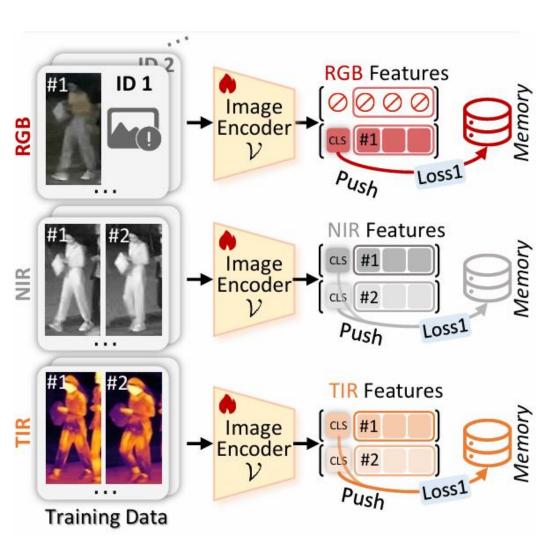
Framework



Miss-ReID is the first work to handle multi-modality ReID under more general modality-missing scenarios encountered during both training and inference.

Methodology

1. M-bHIPR

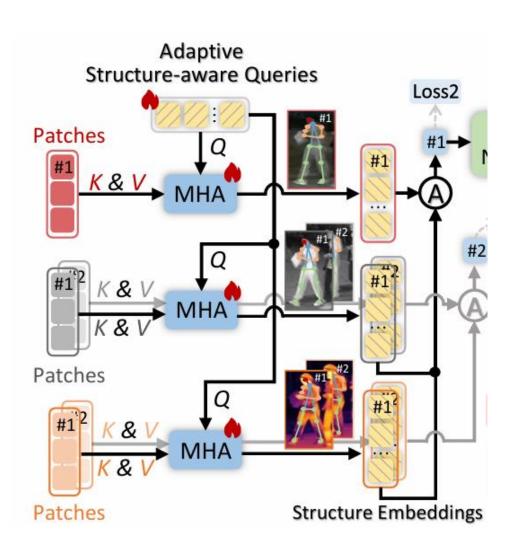


Memory-based Heterogeneous Identity Prototype Representation

Firstly, M-bHIPR extracts diverse visual features from accessible modalities, and then builds modality-specific memory banks to store heterogeneous prototypes for each individual identity, ensuring the preservation of multi-modality characteristics.

Methodology

2. M-iOSM

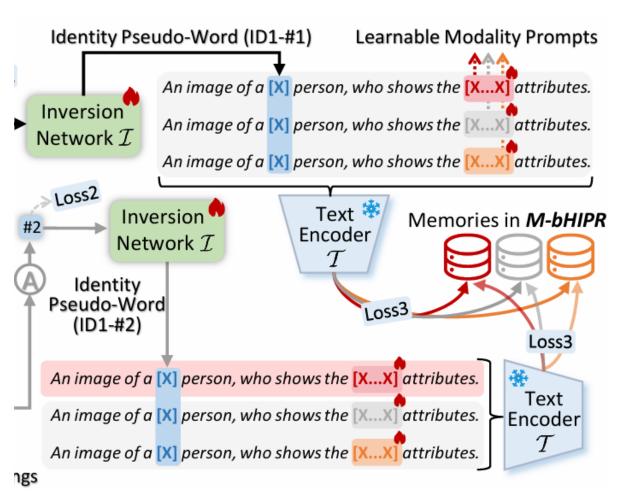


Modality-invariant Object Structure Modeling

Afterwards, M-iOSM employs structure-aware query interactions to dynamically distill modality-invariant object structures from existing localized visual patches.

Methodology

3. L-dMMC



Language-driven Missing Modality Completion

- ✓ By leveraging the textual inversion technique, the extracted visual structural features are further reversed into pseudo-word tokens that encapsulate the identityrelevant structural semantics with L-dMMC module.
- ✓ Ultimately, the inverted tokens, integrated with diverse learnable modality prompts, are embedded into crafted textual templates to form the personalized linguistic descriptions for diverse modalities.
- ✓ Benefiting from VLMs' inherent vision-text alignment capability, L-dMMC produces the textual embeddings to substitute the absent visual cues.

Ablation Study

Table 1: The impacts of various components. We report the comparison results between different combinations (Model $\mathbf{B} - \mathbf{F}$) and the baseline (Model \mathbf{A}) under both **modality-complete** and **-missing** training settings on RGBNT201. Here, '**Modality Complete**' represents learning the modality-complete data during **training**, and ' $\eta = (0.1, 0.1, 0.1)$ ' denotes randomly abandoning 10% RGB images, 10% NIR images, and 10% TIR images during **training**. The evaluations are both conducted across six modality-missing scenarios, and mean mAP and R-1 are reported below.

Index		Modules		Comp	lexity	Modality	Complete	$\eta = (0.1, 0.1, 0.1)$		
		M-iOSM	L-dMMC	Params	FLOPs	Mean mAP	Mean R-1	Mean mAP	Mean R-1	
A	X	X	X	86.4M	34.3G	48.9	50.4	46.4	47.0	
В	/	X	X	86.4M	34.3G	51.1(+2.2)	51.4(+1.0)	47.4(+1.0)	48.0(+1.0)	
\mathbf{C}	X	✓	×	86.4M	34.3G	50.2(+1.3)	52.1(+1.7)	46.9(+0.5)	48.7(+1.7)	
D	/	✓	×	86.4M	34.3G	53.3(+4.4)	54.1(+3.7)	49.4(+3.0)	49.8(+2.8)	
E	X	✓	✓	89.6M	43.6G	52.1(+3.2)	53.4(+3.0)	47.4(+1.0)	49.7(+2.7)	
F	/	✓	✓	89.6M	43.6G	54.6(+5.7)	55.7(+5.3)	50.1(+3.7)	51.3(+4.3)	

Comparison with Stat-Of-The-Art Methods

Table 2: Performance comparisons under **modality-missing** situations that only occur at the **inference** phase of multi-modality person ReID on RGBNT201. † denotes the model that is trained using both images and their corresponding text annotations. The best results are labeled with **boldface**. $\downarrow x.x\%$ and $\downarrow x.x\%$ highlight the lowest mAP and R-1 drop rates, respectively. '–' indicates that the metric is unpublished.

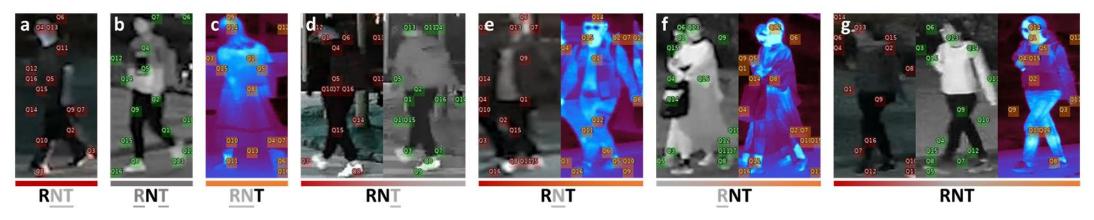
Methods	RNT		RNT		RNT		RNT		RNT		$\underline{\mathbf{R}}\mathbf{N}\underline{\mathbf{T}}$		RNT mAP R-1		Mean	
	mAP	R-1	mAP	R-1	mAP	R-1	mAP	R-1	mAP	R-1	mAP	R-1	mAP	R-1	mAP	R-1
PCB [ECCV 2018]	32.8	28.1	23.6 ↓28.0%	24.2 ↓13.9%	24.4 \$\rm\$25.6%	25.1 ↓10.7%	19.9 \$\square\$39.3%	14.7 ↓47.7%	20.6 ↓37.2%.	23.6 ↓16.0%	11.0 ↓66.5%	6.8 ↓75.8%	18.6 ↓43.3%	14.4 ↓48.8 %	19.7 \$\dagger\$39.9%	18.1 ↓35.6%
TOP-ReID	72.3	76.6	54.4 ↓24.8%	57.5 ↓24.9%	64.3 ↓11.1%	67.6 ↓11.7%	51.9 \$\dagger\$28.2%	54.5 ↓28.9%	35.3 ↓51.2%	35.4 ↓53.8%	26.2 ↓63.8%	26.0 ↓66.1%	34.1 \$\displaystyle 52.8\%	31.7 ↓58.6%	44.4 ↓38.6%	45.4 ↓40.7%
DeMo [AAAI 2025]	79.0	82.3	63.3 ↓19.9%	65.3 ↓20.7%	72.6 ↓8.1%	75.7 ↓8.0%	56.2 \$\dagger\$28.9%	54.1 ↓34.3%	45.6 ↓42.3%	46.5 ↓43.5%	26.3 ↓66.7%	24.9 ↓69.7%	40.3 _49.0%	38.5 ↓53.2%	50.7 ↓35.8%	50.8 ↓38.3%
IDEA [†] [CVPR 2025]	80.2	82.1	62.9 ↓21.6%	_ ↓-%	71.5 ↓10.8%	- ↓-%	58.4 ↓27.2%	_ ↓-%	43.3 ↓46.0%	_ ↓-%	27.1 ↓66.2%	- ↓-%	39.9 ↓50.2%	- ↓-%	50.5 ↓37.0%	_ ↓_%
Miss-ReII [Ours]	76.9	78.9	66.6 ↓13.4%	68.2 ↓13.6%	72.4 \$\dagger\$5.9%	75.5 ↓4.3%	63.2 ↓17.8%	63.8 ↓19.1%	47.2 ↓38.6%	49.5 ↓37.3%	34.5 ↓55.1%	33.3 ↓57.8%	43.9 ↓42.9%	44.3 ↓43.9%	54.6 ↓29.0%	55.7 ↓29.4%

Performance Analysis of Miss-ReID under Varying Tri-modality Missing Rates

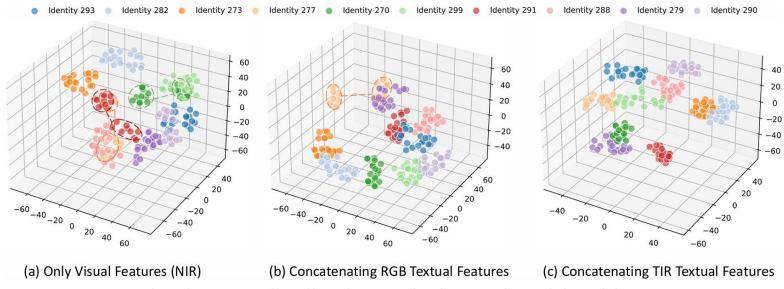
Table 3: Performance comparisons of setting different **tri-modality missing rates** on RGBNT201. Each tuple $(\eta_{rgb}, \eta_{nir}, \eta_{tir})$ represents the proportion of randomly abandoned RGB, Near-Infrared, and Thermal-Infrared images during **training**.

Tri-Modality Missing	(0.0, 0.0, 0.0)		(0.1, 0.1, 0.1)		(0.3, 0.3, 0.3)		(0.5, 0.5, 0.5)		(0.1, 0.3, 0.5)		(0.5, 0.3, 0.1)	
Rate η	mAP	R-1										
RNT	76.9	78.9	72.3	73.4	68.4	71.2	68.2	72.8	69.6	72.2	67.6	67.6
RNT	66.6	68.2	61.3	61.7	57.6	58.3	56.7	58.4	56.1	58.4	57.6	58.4
$R\underline{\mathbb{N}}T$	72.4	75.5	68.8	72.6	65.8	69.5	63.6	65.1	66.9	69.7	65.7	67.0
$\mathbf{RN}\underline{\mathrm{T}}$	63.2	63.8	55.3	55.7	52.3	56.5	52.3	54.4	53.2	57.3	50.2	50.7
RNT	47.2	49.5	42.8	45.2	44.9	47.5	41.6	40.8	41.1	40.3	47.1	47.6
$\underline{\mathbf{R}}\mathbf{N}\underline{\mathbf{T}}$	34.5	33.3	30.9	29.7	26.8	26.3	26.5	22.2	27.1	28.1	26.5	24.6
$\mathbf{R}\underline{\mathbf{N}}\mathbf{T}$	43.9	44.3	41.5	42.7	43.0	45.5	42.7	46.4	43.9	47.0	39.2	38.8
Mean	54.6	55.7	50.1	51.3	48.4	50.6	47.3	47.9	48.1	50.1	47.7	47.8

Visualizations

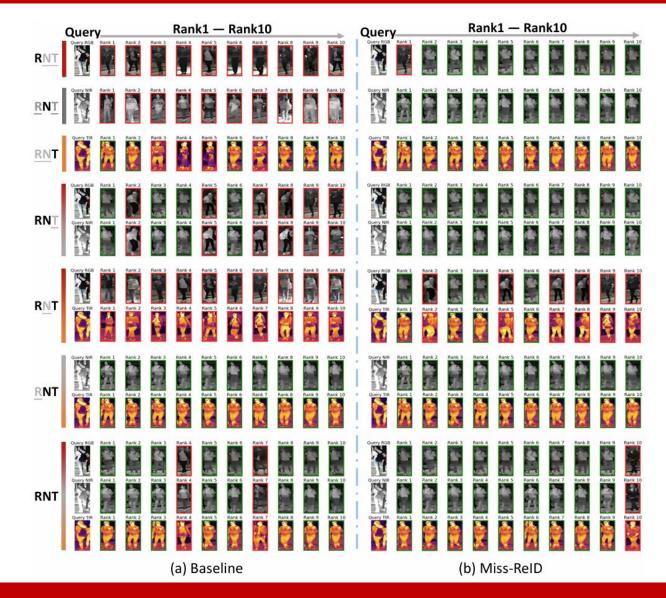


Visualizations of the attentive regions towards 16 well-learned structure-aware queries.



The feature distributions of 10 random identities.

Retrieval Result



Thanks for watching!