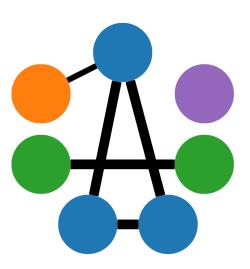
Graph Your Own Prompt

Xi Ding^{1,3}, Lei Wang^{1,2}, Piotr Koniusz^{1,2,3,4}, Yongsheng Gao¹

¹Griffith University ²Data61/CSIRO ³Australian National University ⁴University of New South Wales

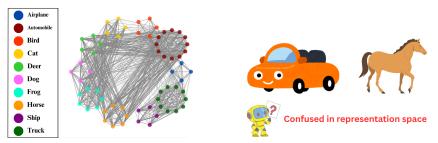
Outline

- Motivation
- 2 Method
- 3 Experiments
- 4 Discussion
- Conclusion



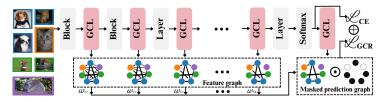
Motivation: Why Structure the Feature Space?

- Deep neural networks achieve strong accuracy but their internal features are often:
 - noisy and entangled,
 - misaligned with semantic class boundaries,
 - hard to interpret and fragile under distribution shifts.
- In many trained models, samples from different classes can remain close in feature space, while same-class samples may not cluster well.
- This harms generalization, robustness and interpretability, even when the final classifier performs well.



Our Idea in One Slide

- Build relational graphs directly from:
 - intermediate features and
 - class predictions within each mini-batch.
- Use the prediction graph as a semantic reference.
- Regularize the network so that feature graphs at multiple layers align with this semantic prediction graph.
- This acts as an internal "prompt":
 - the model uses its own prediction structure to refine its feature geometry,
 - without changing the backbone architecture or adding trainable parameters.



Overview of Graph Consistency Regularization (GCR)

- Goal: enforce consistency between
 - batch-level feature similarity graphs and
 - a class-aware prediction similarity graph.
- Notation (per batch):
 - feature matrix at layer *I*: $X^{(I)} \in \mathbb{R}^{n \times d}$, with rows $x_i^{(I)}$,
 - logits: $Z \in \mathbb{R}^{n \times C}$,
 - ground-truth labels: y_1, \ldots, y_n .
- Key components:
 - Graph Consistency Layers (GCLs) inserted after chosen blocks or layers,
 - a masked prediction relational graph P built from softmax outputs and labels.
 - a graph alignment loss aggregated across layers with adaptive weights.
- **Result**: semantically structured features, stronger intra-class cohesion and reduced noisy inter-class affinities.

Graph Consistency Layer: Feature Graph

• At a chosen layer I, collect the batch features as a matrix:

$$\mathsf{X}^{(I)} = \begin{bmatrix} (\mathsf{x}_1^{(I)})^\top \\ \vdots \\ (\mathsf{x}_n^{(I)})^\top \end{bmatrix} \in \mathbb{R}^{n \times d},$$

where each row is a sample flattened into a feature vector.

- Build a feature similarity graph $F^{(l)} \in \mathbb{R}^{n \times n}$:
 - nodes correspond to samples in the batch,
 - edges encode pairwise similarity between feature vectors.
- We use cosine similarity with non-negative values:

$$F_{ij}^{(I)} = \text{ReLU}(\cos(\mathbf{x}_i^{(I)}, \mathbf{x}_i^{(I)})), \quad i, j = 1, \dots, n.$$
 (1)

 This graph captures how the model currently organizes samples in feature space at that layer.

Graph Consistency Layer: Masked Prediction Graph

- From the prediction logits $Z = [z_1^\top, \dots, z_n^\top]^\top$ of the same batch:
 - apply softmax to obtain class probability vectors $p_i = \text{softmax}(z_i)$,
 - compute pairwise cosine similarity between prediction vectors:

$$S_{ij} = \text{ReLU}(\cos(p_i, p_j)). \tag{2}$$

• To focus on reliable semantic relations, we build a binary mask $M \in \{0,1\}^{n \times n}$:

$$M_{ij} = \begin{cases} 1, & \text{if } y_i = y_j, \\ 0, & \text{otherwise.} \end{cases}$$
 (3)

• The masked prediction graph $P \in \mathbb{R}^{n \times n}$ is then

$$P_{ij} = M_{ij} \odot S_{ij}, \tag{4}$$

where \odot denotes elementwise multiplication.

 This graph keeps intra-class semantic structure and discards possibly misleading inter-class similarities.

Layer-wise Graph Alignment

- For each GCL at layer I, we align:
 - the feature graph F^(I) at that layer,
 - with the fixed masked prediction graph P for the batch.
- We:
 - keep only the strictly upper triangular part (undirected graph, no self-loops):

$$triu(A) = upper triangular part of A, without diagonal,$$

- measure the discrepancy via the squared Frobenius norm.
- The layer-wise graph consistency loss is

$$\mathscr{L}_{GCR}^{(I)} = \left\| \operatorname{triu}(\mathsf{F}^{(I)}) - \operatorname{triu}(\mathsf{P}) \right\|_F^2. \tag{5}$$

 Small loss means feature relationships follow the semantic relationships implied by predictions; large loss means mismatch between geometry and semantics.

Aggregating Across Layers

- GCL can be placed at multiple depths: early, middle, late, or all stages.
- For a set of layers $\{1, ..., K\}$, compute a graph consistency loss at each layer and combine them:

$$\mathcal{L}_{GCR} = \sum_{l=1}^{K} w_l \left\| \operatorname{triu}(\mathsf{F}^{(l)}) - \operatorname{triu}(\mathsf{P}) \right\|_F^2, \tag{6}$$

where $w_l \ge 0$ are layer weights.

• Fixed weighting examples:

$$w_I \in \left\{ \frac{1}{K}, \ \frac{I}{K}, \ \left(\frac{I}{K}\right)^2, \ \frac{1+\cos(\pi I/K)}{2}, \ \frac{\arccos(1-2I/K)}{\pi} \right\}.$$

Adaptive weighting (graph-discrepancy-based):

$$w_{I} = \frac{\exp(-\|\operatorname{triu}(\mathsf{F}^{(I)}) - \operatorname{triu}(\mathsf{P})\|_{F}^{2})}{\sum_{i=1}^{K} \exp(-\|\operatorname{triu}(\mathsf{F}^{(j)}) - \operatorname{triu}(\mathsf{P})\|_{F}^{2})}.$$
 (7)

Training Objective

• The standard supervised objective is cross-entropy on the predictions:

$$\mathscr{L}_{CE}$$
.

Our total loss adds the GCR term:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{CE}} + \lambda \, \mathcal{L}_{\text{GCR}}, \tag{8}$$

where $\lambda > 0$ controls the strength of the regularization.

- Interpretation:
 - ullet $\mathscr{L}_{\mathrm{CE}}$ fits labels at the prediction level,
 - £_{GCR} aligns feature-space relations with class-aware prediction structure.
- Implementation is portable:
 - no new learnable parameters,
 - only involves matrix operations over the current batch,
 - can be applied to many backbones without redesigning the architecture.

GCR as Self-Prompting

- Traditional prompting:
 - injects external tokens or instructions into the model.
- GCR can be viewed as internal prompting:
 - the model uses its own masked prediction graph P to generate a structural signal,
 - this signal shapes feature relationships F^(I) across layers via the loss in (5)–(8).
- Characteristics of this internal prompt:
 - purely internal (no external tokens),
 - structural (operates on pairwise relations, not single samples),
 - semantic (class-aware masking makes the graph class-consistent).

Experimental Setup

Datasets:

- Kaggle Cats vs. Dogs,
- CIFAR-10 and CIFAR-100,
- Tiny ImageNet,
- ImageNet-1K.

Architectures:

- lightweight CNNs: MobileNet, ShuffleNet, SqueezeNet, GoogLeNet,
- deeper CNNs: ResNet, ResNeXt, DenseNet, stochastic and squeeze-and-excitation variants,
- vision transformers: ViT, Swin, MobileViT, CEiT, iFormer, ViG,
- masked autoencoders.
- GCLs are inserted at early, middle, late stages, or combinations of them.

Quantitative Results on CIFAR-10/100

	MAE	MNet	SN	SQNet	GLNet	Rx-50	Rx-101	R34	R50	R101	D121	Mean
Baseline	$88.95_{\pm 0.33}$	$90.23_{\pm 0.25}$	$91.21_{\pm 0.28}$	$92.30_{\pm 0.25}$	$94.10_{\pm 0.26}$	$94.57_{\pm 0.29}$	$95.12_{\pm 0.30}$	$94.83_{\pm 0.25}$	$95.03_{\pm 0.28}$	$95.22_{\pm 0.31}$	$95.01_{\pm 0.27}$	$93.32_{\pm 2.26}$
Mid GCL	$\begin{array}{c} 89.42_{\pm 0.25} \\ \textbf{89.77}_{\pm 0.22} \\ \underline{89.70}_{\pm 0.29} \end{array}$	$91.15_{\pm0.18}$	$92.58_{\pm 0.19}$	$92.40_{\pm0.20}$	$94.82_{\pm0.21}$	$95.47_{\pm0.19}$	$95.39_{\pm0.24}$	$95.69_{\pm0.23}$	$95.61_{\pm0.20}$	$95.75_{\pm0.17}$	$95.51_{\pm0.22}$	$94.01_{\pm 2.15}$
Mid+Late	$89.52_{\pm 0.19}$ $89.59_{\pm 0.28}$ $89.64_{\pm 0.25}$	$91.23_{\pm 0.20}$	$92.79_{\pm 0.20}$	$92.86_{\pm0.23}$	$94.61_{\pm 0.22}$	$95.51_{\pm 0.19}$	$95.38_{\pm0.27}$	$95.45_{\pm 0.18}$	$95.33_{\pm0.26}$	$95.52_{\pm0.14}$	$95.70_{\pm 0.19}$	$94.00_{+2.09}$
Full GCL	$89.55_{\pm0.23}$	$90.99_{\pm 0.18}$	$92.48_{\pm0.19}$	$92.65_{\pm0.20}$	$94.57_{\pm0.21}$	$95.50_{\pm0.19}$	$95.34_{\pm0.20}$	$95.48_{\pm0.17}$	$95.62_{\pm0.18}$	$95.38_{\pm0.21}$	$95.51_{\pm0.20}$	$93.92_{\pm 2.15}$

Accuracy (%) on CIFAR-10 across models.

	MAE	MNet	SN	SQNet	Rx-50	Rx-101	R34	R50	D121	Mean
Baseline	$64.29_{\pm 0.34}$	$65.95_{\pm 0.25}$	$70.11_{\pm 0.30}$	$69.43_{\pm 0.27}$	$77.75_{\pm 0.29}$	$77.83_{\pm0.30}$	$76.82_{\pm 0.28}$	$77.31_{\pm 0.29}$	$77.09_{\pm 0.27}$	$72.95_{\pm 5.50}$
Mid GCL	$64.99_{\pm0.30}$	$67.88_{\pm0.21}$	$71.89_{\pm0.24}$	$70.21_{\pm 0.25}$	$79.07_{\pm0.19}$	$79.28_{\pm0.26}$	$\begin{array}{c} 77.90_{\pm 0.22} \\ 77.83_{\pm 0.20} \\ \textbf{78.31}_{\pm 0.20} \end{array}$	$78.90_{\pm0.24}$	$79.26_{\pm0.21}$	$74.37_{\pm 5.66}$
Mid+Late	$65.27_{\pm0.28}$	$68.33_{\pm 0.19}$	$71.63_{\pm 0.28}$	$70.30_{\pm 0.22}$	$78.91_{\pm 0.17}$	$79.57_{\pm0.21}$	$\begin{array}{c} 77.41_{\pm 0.19} \\ 77.30_{\pm 0.20} \\ \underline{78.19}_{\pm 0.23} \end{array}$	$78.85_{\pm0.22}$	$79.54_{\pm0.24}$	$74.41_{\pm 5.55}$
Full GCL	$65.38_{\pm 0.22}$	$68.22_{\pm0.19}$	$71.30_{\pm0.24}$	$70.77_{\pm0.20}$	$79.01_{\pm0.19}$	$79.29_{\pm 0.21}$	$77.79_{\pm0.20}$	$78.71_{\pm0.22}$	$79.27_{\pm0.19}$	$74.42_{\pm 5.49}$

Accuracy (%) on CIFAR-100 across models.

Quantitative Results on Tiny ImageNet/ImageNet-1K

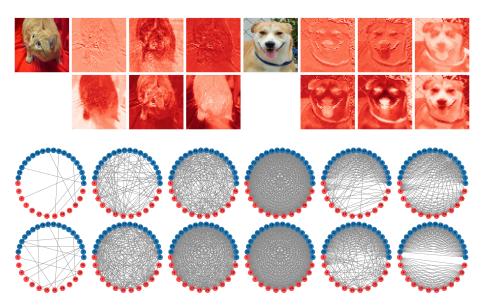
	ViT/32	ViT/16	CeiT	$MViT_{XXS}$	MViT _{XS}	MViT	Swin	MNet	R18SD	SER18	R34	Mean
Baseline	$37.79_{\pm0.35}$	$40.05_{\pm 0.33}$	$49.95_{\pm 0.29}$	$49.28_{\pm 0.29}$	$51.58_{\pm 0.27}$	$52.68_{\pm 0.27}$	$54.27_{\pm 0.25}$	$57.81_{\pm 0.25}$	$63.49_{\pm 0.26}$	$65.65_{\pm 0.24}$	$67.51_{\pm 0.25}$	$53.64_{\pm 9.62}$
Mid GCL	$\frac{39.02\pm0.29}{38.61\pm0.23}$ 37.98 ± 0.28	40.95 ± 0.19	$50.30_{\pm 0.19}$	49.92 ± 0.26	$51.43_{\pm 0.22}$	53.88 ± 0.20	55.23 ± 0.24	$57.63_{\pm 0.20}$	$64.03_{\pm 0.22}$	65.66 ± 0.23	67.62 ± 0.20	$54.11_{\pm 9.38}$
Early+Mid Mid+Late Early+Late	$39.08_{\pm 0.25}$ $38.44_{\pm 0.18}$ $38.34_{\pm 0.23}$	$40.52_{\pm 0.28}$	$50.09_{\pm 0.25}$	$50.55_{\pm 0.18}$	$51.48_{\pm 0.21}$	$53.90_{\pm0.20}$	$55.62_{\pm 0.23}$	$57.65_{\pm0.21}$	$64.29_{\pm 0.17}$	$65.95_{\pm0.19}$	$67.58_{\pm0.21}$	$54.19_{\pm 9.52}$
Full GCL	$38.38_{\pm0.22}$	$40.80_{\pm 0.18}$	$49.92_{\pm 0.20}$	$50.16_{\pm 0.17}$	$51.87_{\pm 0.19}$	$54.01_{\pm 0.19}$	$54.87_{\pm 0.19}$	$57.64_{\pm 0.20}$	$64.10_{\pm 0.19}$	$\underline{66.01}_{\pm 0.15}$	$67.66_{\pm 0.18}$	$54.13_{\pm 9.49}$

Accuracy (%) on Tiny ImageNet across models.

Method	iFormer-S	iFormer-B	ViT-B/16	ViG-B
Baseline	$83.4_{\pm0.40}$	$84.6_{\pm0.45}$	$74.3_{\pm 0.51}$	$82.3_{\pm 0.42}$
Early GCL	$83.8_{\pm0.31}$	$85.0_{\pm 0.40}$	$74.7_{\pm 0.44}$	$82.8_{\pm 0.35}$
Mid GCL	$83.8_{\pm0.39}$	$85.5_{\pm 0.33}$	$75.2_{\pm 0.36}$	$83.0_{\pm0.34}$
Late GCL	$84.5_{\pm 0.29}$	86.1 $_{\pm 0.30}$	75.8 $_{\pm 0.33}$	84.0 $_{\pm 0.30}$
Early + Mid	$84.3_{\pm 0.33}$	$85.9_{\pm 0.38}$	$75.6_{\pm 0.41}$	$83.7_{\pm 0.33}$
Mid + Late	84.8 $_{\pm0.28}$	$85.9_{\pm 0.37}$	$75.6_{\pm 0.34}$	$83.9_{\pm 0.30}$
Early + Late	$84.5_{\pm 0.30}$	$85.2_{\pm 0.28}$	$74.9_{\pm 0.33}$	$83.5_{\pm 0.29}$
Full GCL	$84.3_{\pm 0.29}$	$85.8_{\pm0.26}$	$75.5_{\pm 0.30}$	$83.6_{\pm0.27}$

Accuracy (%) on ImageNet-1K across models.

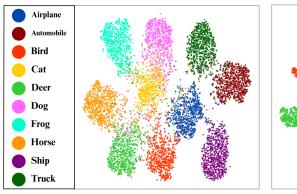
Qualitative Results on Kaggle Cats vs. Dogs



Qualitative Results on CIFAR-10



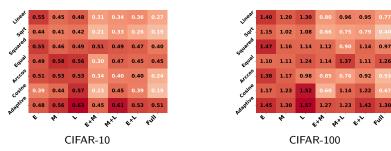
Qualitative Results on CIFAR-10





Left is the baseline (ShuffleNet), and the right is GCL-augmented. GCL-augmented yields more compact intra-class clusters and better inter-class separation.

Where to Place & How to Weight GCLs?



• Placement:

- Late GCLs yield the largest gains.
- Early GCLs help stabilize feature learning and reduce noise propagation.
- Combining late with other stages is often beneficial.
- Full GCL not always best (too much regularization may hurt).

Weighting:

- Adaptive weighting works best (focuses on misaligned layers).
- Fixed schemes: squared / equal > linear / square root.

What Does GCR Buy Us?

Semantic feature geometry:

- features are organized to respect class-aware relationships in prediction space,
- intra-class cohesion increases, inter-class confusion decreases.

Better generalization:

- graph-based regularization shrinks the effective hypothesis space,
- empirical results show consistent gains across datasets and architectures

Interpretability:

- relational graphs become easier to interpret,
- feature maps highlight semantically meaningful regions.

GCR as a Bridge Between Paradigms

Graph-based learning:

- GCR builds graphs dynamically within each batch,
- no need for persistent global graphs or specialized graph neural networks.

Contrastive-style supervision:

- graph alignment can be seen as a soft form of contrast,
- encourages similar samples to be close and dissimilar samples to be separated,
- without explicit positive and negative sampling.

Prompting and self-conditioning:

 prediction graphs act as continuous, internal prompts that shape representation learning.

When Is GCR Most Helpful?

- Datasets with many classes or fine-grained distinctions:
 - benefit from stronger control over feature geometry,
 - GCR helps separate visually similar but semantically different classes.
- Architectures with limited capacity:
 - lightweight models gain substantial accuracy from the extra structural supervision.
- Deeper backbones:
 - late layers encode rich semantics, and graph alignment at these layers is especially effective.

Limitations and Practical Considerations

- Requires labels to build the class-aware mask:
 - the current formulation is fully supervised,
 - extensions to semi-supervised or self-supervised settings remain open work.
- Graph construction is batch-based:
 - complexity grows with batch size,
 - in practice, the cost is manageable due to efficient matrix operations.
- Strong reliance on prediction quality:
 - very early in training predictions may be noisy,
 - however, the class-aware mask mitigates the influence of unreliable inter-class similarities.

Summary

- Introduced Graph Consistency Regularization (GCR):
 - a parameter-free, model-agnostic framework,
 - aligns batch-level feature graphs with a class-aware prediction graph.
- Proposed Graph Consistency Layers (GCLs):
 - lightweight modules that can be inserted at arbitrary depths,
 - enforce multi-layer structural supervision with flexible weighting.
- Demonstrated:
 - improved semantic structure of feature spaces,
 - stronger intra-class cohesion and clearer class boundaries,
 - consistent accuracy gains across many models and datasets.

Outlook and Future Work

- Extend GCR beyond image classification:
 - semantic and instance segmentation,
 - retrieval and metric learning tasks,
 - multi-modal settings such as vision-language models.
- Combine GCR with self-supervised and semi-supervised learning:
 - use pseudo-labels or clustering to build masked prediction graphs without full supervision.
- Explore more advanced graph constructions:
 - adaptive sparsification,
 - other similarity measures and masking strategies,
 - alternative ways to incorporate temporal or multi-view structure.

Thank You

Paper Code

Scan the QR codes to read our paper and code.