

SYMPHONY

Synergistic Multi-agent Planning with Heterogeneous Language Model Assembly

Wei Zhu, Zhiwen Tang*, Kun Yue

School of Information Science and Engineering, Yunnan University
Yunnan Key Laboratory of Intelligent System and Computing
zhuwei@stu.ynu.edu.cn, {zhiwen.tang, kyue}@ynu.edu.cn

NeurIPS 2025

The Problem with Single-Agent Planning

Existing Approach

Most LLM-based planners use a **single agent** (one LLM) for MCTS.

- > They rely on querying the **same model** repeatedly to simulate search branches.
- > This assumes model stochasticity is enough for diverse exploration.

The Limitation

This single-agent paradigm leads to **low** reasoning diversity.

- Outputs often reflect the same "dominant reasoning pattern."
- This results in narrow search, suboptimal plans, and susceptibility to local optima.

Our Solution: SYMPHONY

The Key Idea

Move from a single agent to a **heterogeneous** multi-agent pool.

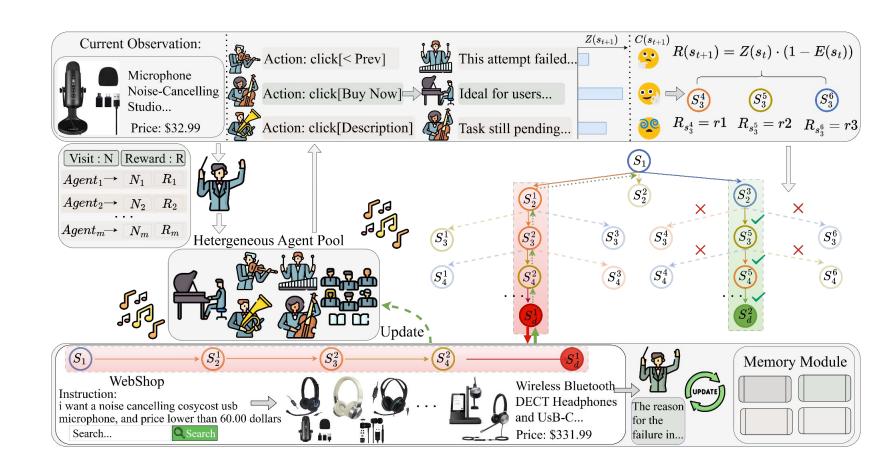
- Leverage the diverse reasoning patterns from different LLMs (e.g., Qwen, Llama, GPT).
- SYMPHONY: Synergistic Multi-agent
 Planning with HeterogeneOus laNguage
 model assemblY.

How It Works

Different agents are assigned to generate actions at search nodes.

- This introduces structural diversity directly into the MCTS tree.
- It increases exploration, reduces model-specific bias, and finds complementary solution paths.

Framework Overview


Core Components

Heterogeneous Agent Pool:

Agent Scheduling (UCB):

Pool-wise Memory Sharing:

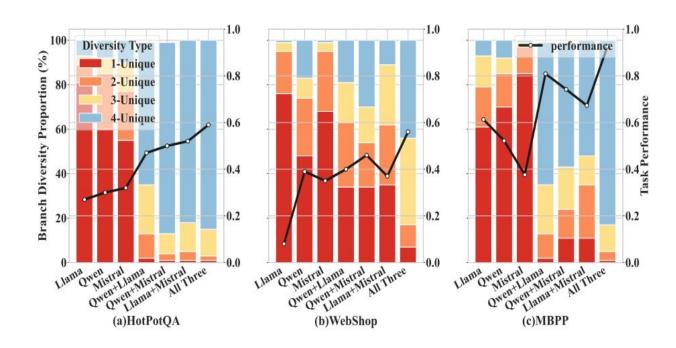
Entropy-Modulated Node Evaluation(EMCS):

Experimental Results

SYMPHONY consistently outperforms SOTA baselines across diverse tasks.

Method	HotpotQA (EM) ↑	WebShop (SR) ↑	MBPP (Pass@1) ↑
ReAct	0.39	0.32	0.710
LATS	0.71	0.38	O.811
MASTER	0.76	-	0.910
SYMPHONY-S (Local)	0.59	0.56	0.927
SYMPHONY-L (API)	0.79	0.72	0.965

SYMPHONY-L (with API models) achieves new SOTA.


SYMPHONY-S (with local models) is highly competitive and efficient.

Analysis: Diversity is Key

Why Does It Work?

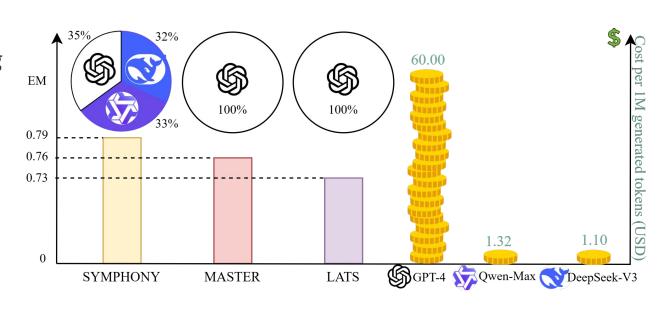
We analyzed **branch diversity** versus the agent pool composition on all three tasks.

- > **Finding:** Increasing agent heterogeneity (from a single agent to the full trio) directly increases the proportion of "4-Unique" branches.
- This structural diversity strongly correlates with task performance.
- Conclusion: More reasoning diversity leads to better exploration and more robust planning.

Efficiency and Cost-Effectiveness

Search Efficiency (HotpotQA)

SYMPHONY requires **far fewer node expansions** to find the solution.


- > LATS (K=50): 66.65 nodes
- > SYMPHONY-L (K=10): 9.47 nodes

Cost-Effectiveness (H	HotpotQA)
-----------------------	-----------

SYMPHONY-L intelligently schedules agents, reducing calls to expensive models.

- > GPT-4 used in only ~35% of calls, vs. 100% for baselines.
- Achieves SOTA performance at a fraction of the API cost.

Method	K	HotpotQA ↑	#Nodes \
ТоТ	10	0.34	33.97
RAP	10	0.44	31.53
LATS	10	0.44	28.42
ТоТ	50	0.49	84.05
RAP	50	0.54	70.60
LATS	50	0.61	66.65
SYMPHONY-S	10	0.59	16.39
SYMPHONY-L	10	0.79	9.47

Conclusion

- > We introduced **SYMPHONY**: The first heterogeneous multi-agent planning framework for MCTS.
- > Core mechanisms (UCB, Pool-wise Memory, EMCS) establish structural diversity and collective learning.
- > SOTA results on HotpotQA, WebShop, and MBPP with high efficiency.

Code:

https://github.com/ZHUWEI-hub/SYMPHONY

Thank You