Predictability Enables Parallelization of Nonlinear State Space Models

Xavier Gonzalez*, Leo Kozachkov*,

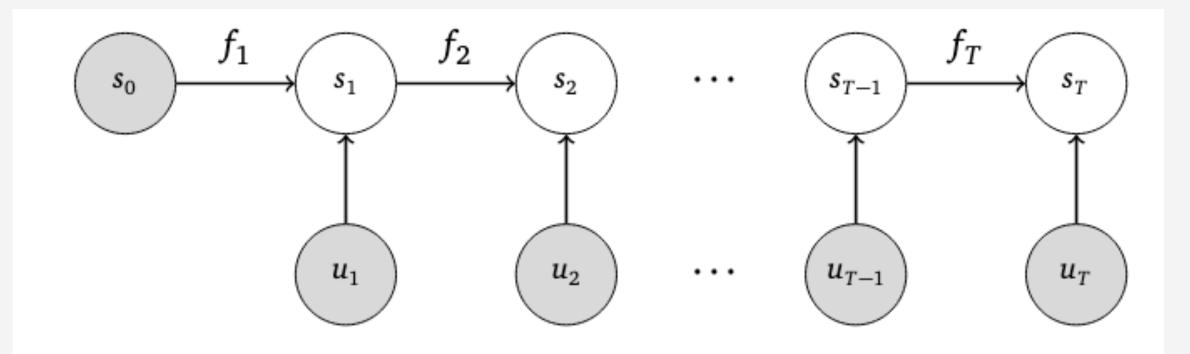
David M. Zoltowski, Kenneth L. Clarkson,

Scott W. Linderman

Nonlinear State Space Models (nSSMs) are everywhere!

$$s_t = f_t(s_{t-1}), s_t \in \mathbb{R}^D$$

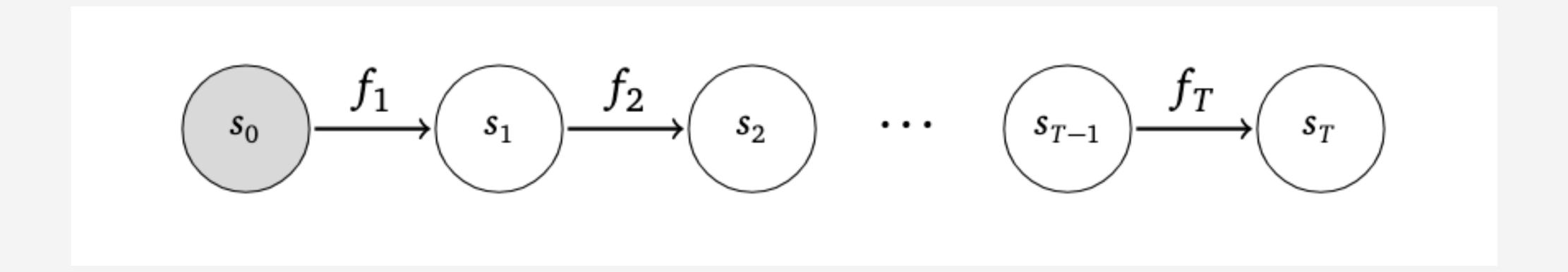
We can include inputs by defining $f_t(s_{t-1}) = f(s_{t-1}, u_t)$



Examples include

- Recurrent Neural Networks (RNNs)
- Markov chain Monte Carlo (MCMC)
- Sampling from a diffusion model
- The blocks of a transformer model over depth
- Gradient descent
- State in reinforcement learning agent
- ...and more...

Evaluating nonlinear SSMs seemed to be "inherently sequential"...

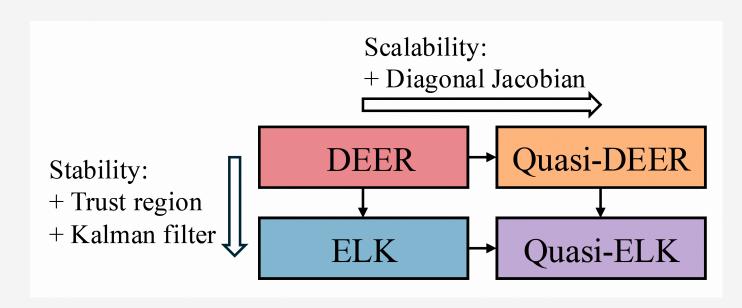


...but turns out that nonlinear SSMs can be parallelized!

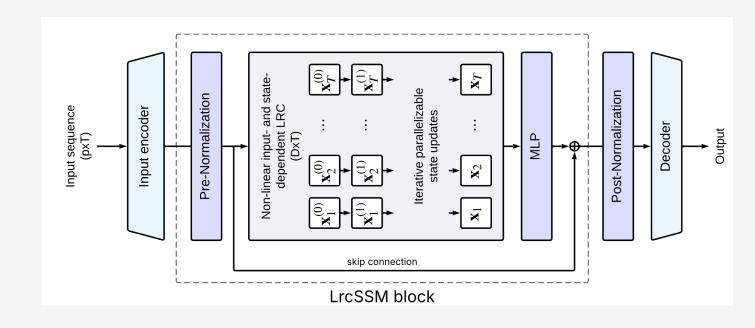
Danieli et al, NeurlPS '23

$$egin{aligned} egin{aligned} egin{aligned} & I & & & & \ & -J_{f_1}|_{oldsymbol{z}_0^k} & I & & & \ & \ddots & \ddots & & \ & & -J_{f_L}|_{oldsymbol{z}_{L-1}^k} & I \end{aligned} egin{aligned} egin{aligned} egin{aligned} oldsymbol{z}_0^k \ oldsymbol{z}_1^k \ oldsymbol{z}_L^k \end{aligned} \end{bmatrix} = egin{bmatrix} f_0(oldsymbol{x}) - oldsymbol{z}_0^k \ f_1(oldsymbol{z}_0^k) - oldsymbol{z}_1^k \ oldsymbol{z}_L^k \end{bmatrix} \end{bmatrix}$$

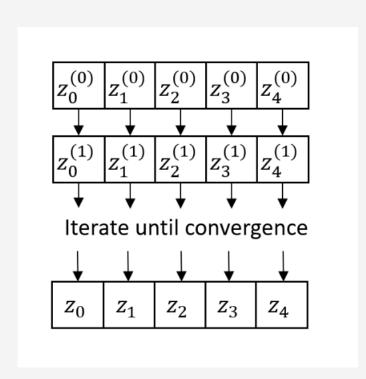
Gonzalez et al, NeurIPS '24



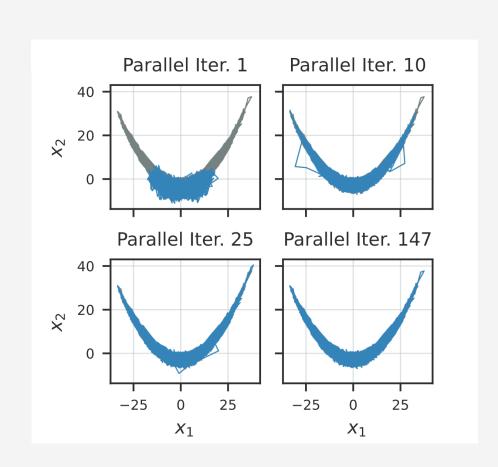
Farsang et al, NeurIPS '25



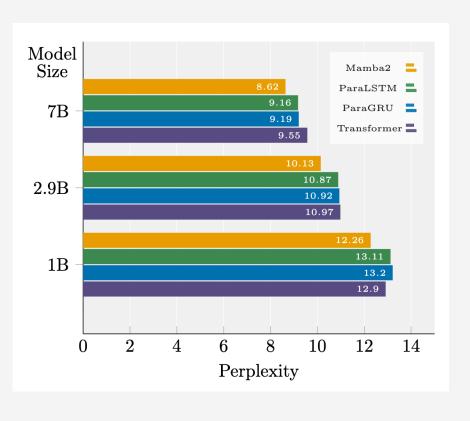
Lim et al, ICLR '24



Zoltowski et al, NeurIPS '25



Danieli et al, '25



We can parallelize nSSMs by going from <u>sequential evaluation</u> to a <u>high-dimensional optimization</u> problem

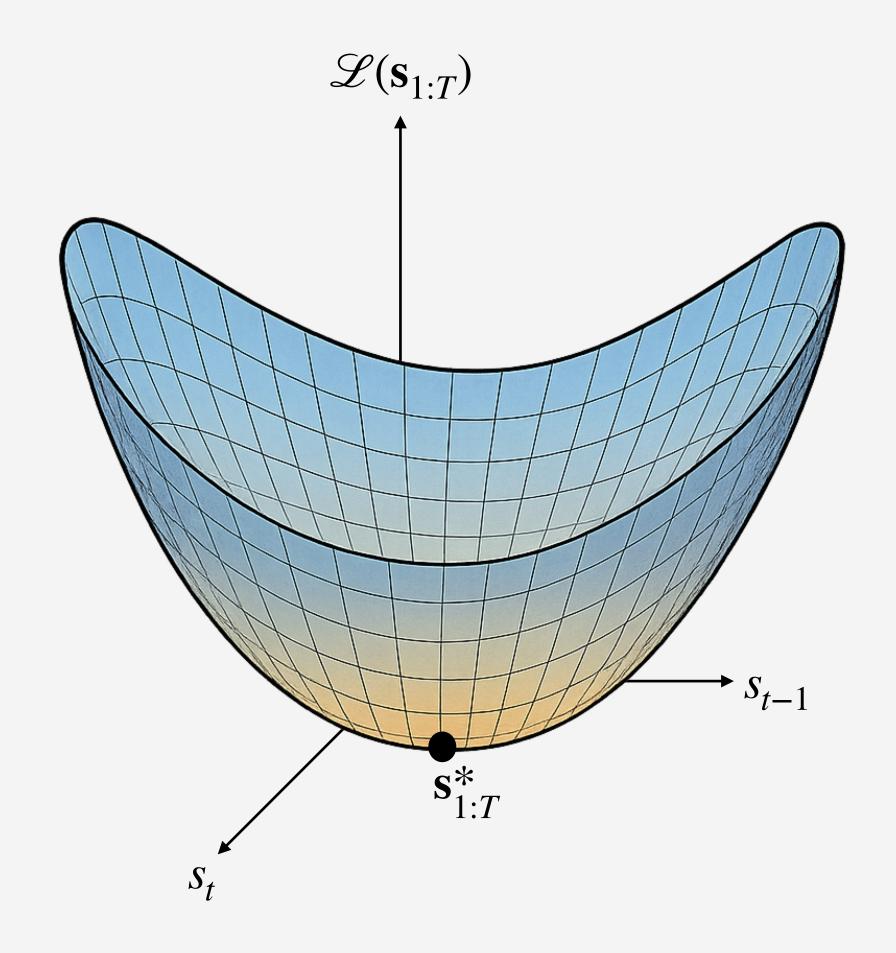
Recall the nSSM satisfies $s_t = f_t(s_{t-1})$, starting from some initial condition $s_0 \in \mathbb{R}^D$.

Treat as our optimization variable the entire trajectory $\mathbf{s}_{1:T} \in \mathbb{R}^{TD}$.

Define the one-step prediction error as $r_t := s_t - f_t(s_{t-1})$.

Define the "merit function" as $\mathcal{L}(\mathbf{s}_{1:T}) := ||r_1||^2 + ||r_2||^2 + \dots + ||r_T||^2$.

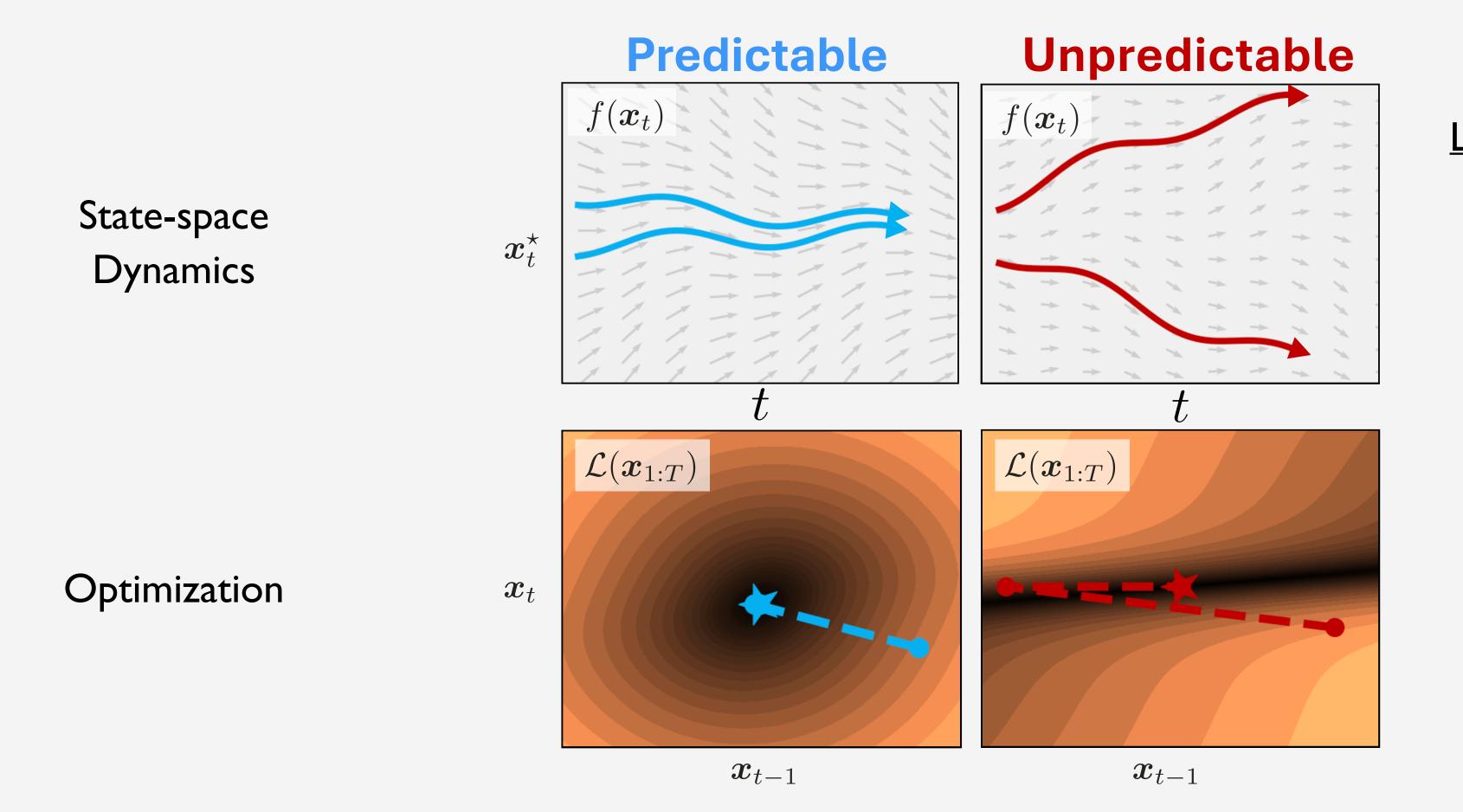
Then the unique minimizer of \mathscr{L} is the true roll-out from the nSSM.



But how do we know when our solver will converge quickly?

We show that "predictability" enables parallelization.

We connect the "predictability" of the state-space dynamics to the conditioning of the optimization problem.



Key quantity

Largest Lyapunov Exponent (LLE, or λ)

- λ < 0, predictable
- $\lambda > 0$, unpredictable

PL constant μ

- $\mu \gg 0$, well-conditioned, fast
- $\mu \approx 0$, ill-conditioned, slow

Main Theorem

Theorem 2 of our paper (informal):

Let μ be the PL constant, representing the conditioning of the optimization problem. Larger μ is a better-conditioned optimization problem that can be solved more quickly.

Let λ be the Largest Lyapunov Exponent (LLE), representing the predicability of the nSSM. $\lambda < 0$ means predicable dynamics, while $\lambda > 0$ means unpredictable dynamics.

Then, under regularity assumptions,

$$\frac{e^{\lambda}-1}{e^{\lambda T}-1} \leq \sqrt{\mu} \leq \frac{1}{e^{\lambda(T-1)}}.$$

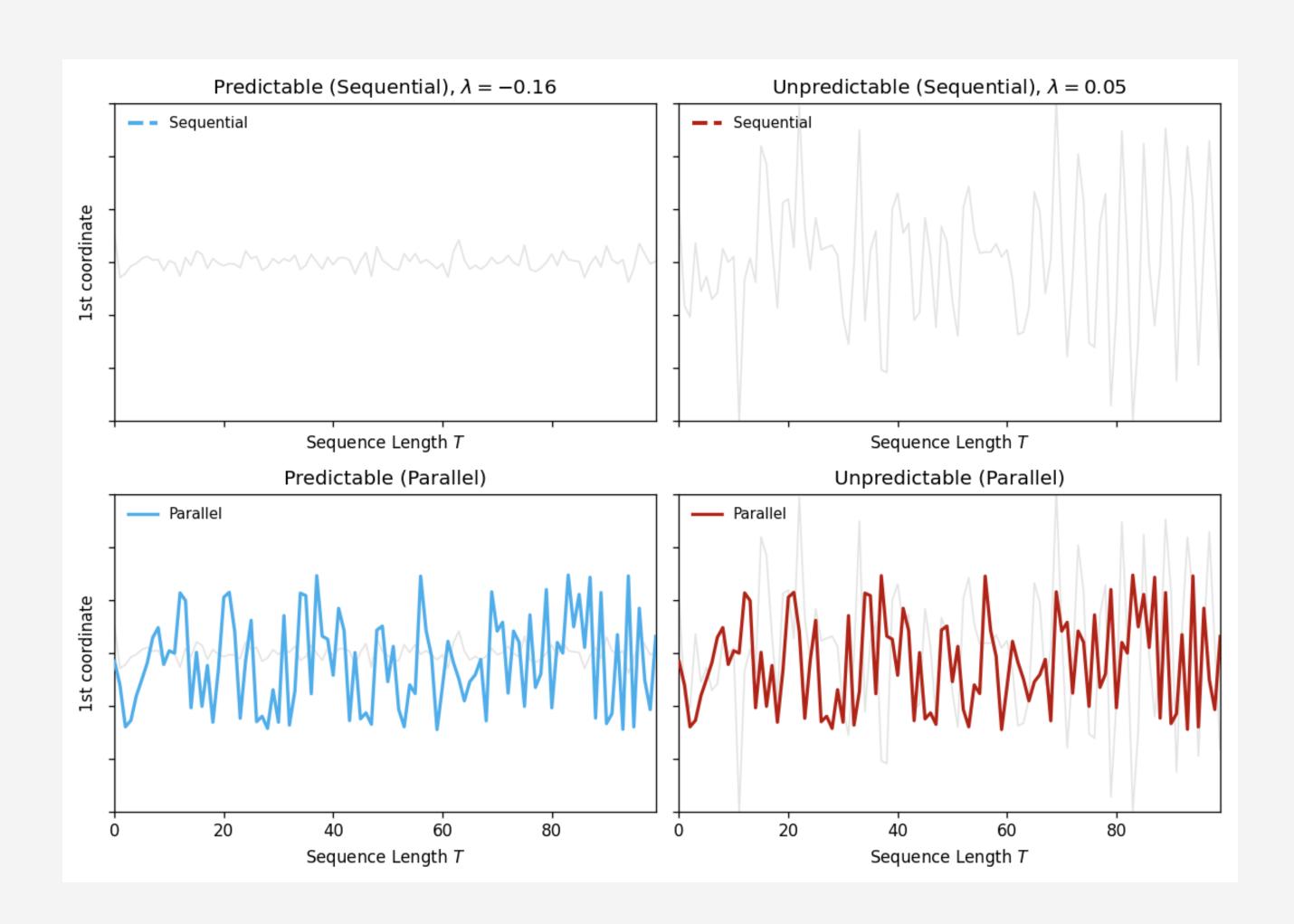
Predictable (λ < 0)

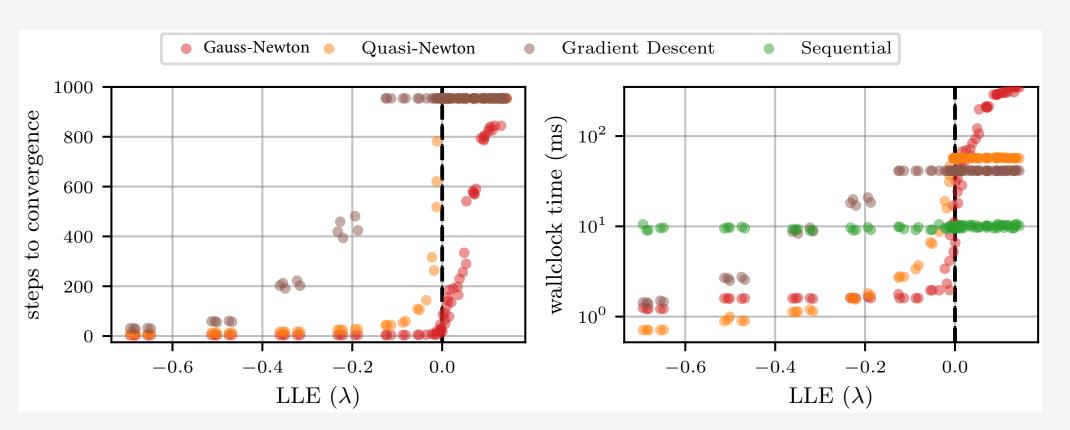
- For long sequences, PL constant μ is bounded away from zero.
- Fast, well-conditioned optimization
- Speed-ups from parallelization

Unpredictable $(\lambda > 0)$

- For long sequences, PL constant $\mu \to 0$ goes to zero exponentially quickly
- Slow, ill-conditioned optimization
- No speed-ups from parallelization :(

Experiments

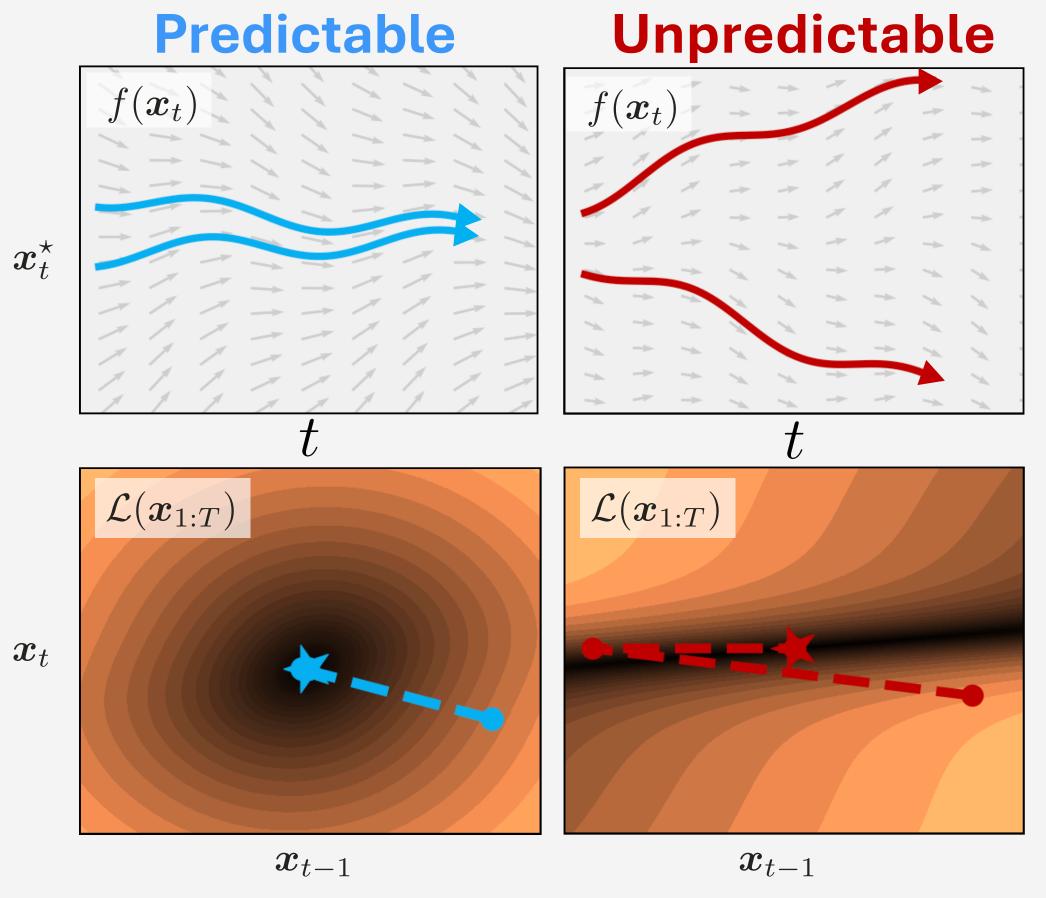




Implications

- Predictable state space models are used in many applications (particularly in robotics and control), and you should parallelize them!
- If you want to build a sequence modeling architecture (RNN) so that it enjoys parallelized training, you should design it to be predictable and therefore parallelizable.

Come by our poster to learn more!



- Paper: https://arxiv.org/abs/2508.16817
- Code: https://github.com/lindermanlab/predictability_enables_parallelization
- Longer Talk: https://www.youtube.com/watch?v=C9AqgW51-B4