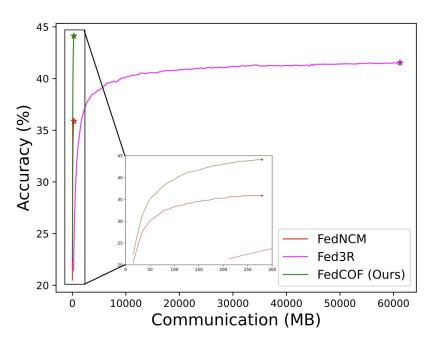


Covariances for Free: Exploiting Mean Distributions for Training-free Federated Learning

Dipam Goswami, Simone Magistri, Kai Wang, Bartłomiej Twardowski, Andrew D. Bagdanov and Joost van de Weijer

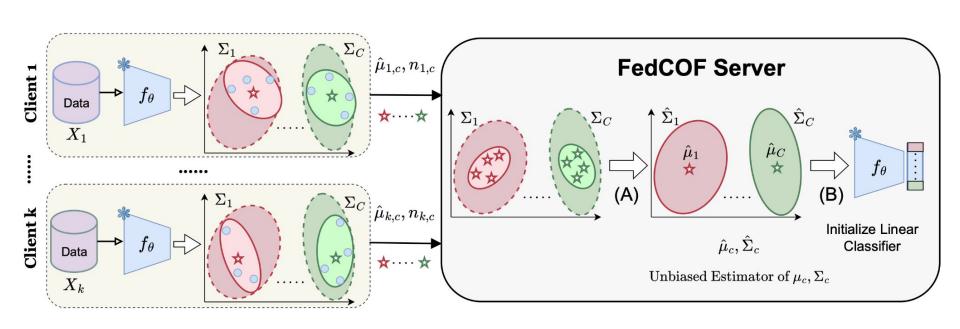
Code: https://github.com/dipamgoswami/FedCOF

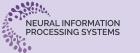
Training-free Federated Learning Methods


- → Federated NCM (FedNCM) Shares first-order statistics (class means and class counts) from each client to server.
- → Federated Ridge Regression (Fed3R) Shares second-order feature statistics (F.F^T) and the sum of class features.

Method	Client Shares	Server Uses	Comm. Cost
FedNCM	$\{\hat{\mu}_{k,c}, n_{k,c}\}_{c=1}^{C'}$	$\{\{\hat{\mu}_{k,c}, n_{k,c}\}_{c=1}^{C'}\}_{k=1}^{K}$	dC'K
Fed3R	G_k, B_k	$\{G_k, B_k\}_{k=1}^K$	$(dC'+d^2)K$
FedCOF	$\{\hat{\mu}_{k,c}, n_{k,c}\}_{c=1}^{C'}$	$\{\{\hat{\mu}_{k,c}, n_{k,c}\}_{c=1}^{C'}\}_{k=1}^{K}, \{\hat{\Sigma}_c\}_{c=1}^{C'}$	dC'K

Training-free Federated Learning Methods


→ We propose FedCOF (Federated Learning with COvariances for Free), which shares only first-order statistics from clients and estimates an unbiased global class covariance at the server to initialize the classifier weights.



Pre-trained MobileNetv2 on iNaturalist-Users-120K

Federated Learning with COvariances for Free

Estimating Covariances Using Only Client Means

For client k, let $\{F_{k,c}^j\}_{j=1}^{n_{k,c}}$ denote the feature vectors of class c, where $n_{k,c}$ is the number of samples from class c assigned to client k. The sample mean of these features, $\overline{F}_{k,c} = \frac{1}{n_{k,c}} \sum_{j=1}^{n_{k,c}} F_{k,c}^j$, is itself a random variable with expectation and variance given by:

$$\mathbb{E}[\overline{F}_{k,c}] = \mu_c, \quad \text{Var}[\overline{F}_{k,c}] = \frac{\Sigma_c}{n_{k,c}}$$
(4)

Proposition 1. Let K be the number of clients, each with $n_{k,c}$ features, and let C be the total number of classes. Let $\hat{\mu}_c = \frac{1}{N_c} \sum_{j=1}^{N_c} F^j$ be the unbiased estimator of the population mean μ_c and $N_c = \sum_{k=1}^K n_{k,c}$ be the total number of features for a single class. Assuming the features for class c are iid across clients at initialization, the estimator

$$\hat{\Sigma}_c = \frac{1}{K-1} \sum_{k=1}^K n_{k,c} (\overline{F}_{k,c} - \hat{\mu}_c) (\overline{F}_{k,c} - \hat{\mu}_c)^\top$$
(5)

is an unbiased estimator of the population covariance Σ_c , for all $c \in 1, \ldots, C$.

Classifier Initialization with Estimated Covariances

Proposition 2. Let $F \in \mathbb{R}^{d \times N}$ be a feature matrix with empirical global mean $\hat{\mu}_g \in \mathbb{R}^d$, and $Y \in \mathbb{R}^{N \times C}$ be a label matrix. The optimal ridge regression solution $W^* = (G + \lambda I_d)^{-1}B$, where $B \in \mathbb{R}^{d \times C}$ and $G \in \mathbb{R}^{d \times d}$ can be written in terms of class means and covariances as follows:

$$B = [\hat{\mu}_c N_c]_{c=1}^C, \quad G = \sum_{c=1}^C (N_c - 1)\hat{S}_c + \sum_{c=1}^C N_c (\hat{\mu}_c - \hat{\mu}_g)(\hat{\mu}_c - \hat{\mu}_g)^\top + N\hat{\mu}_g \hat{\mu}_g^\top, \tag{7}$$

where the first two terms $G_{with} = \sum_{c=1}^{C} (N_c - 1) \hat{S}_c$ and $G_{btw} = \sum_{c=1}^{C} N_c (\hat{\mu}_c - \hat{\mu}_g) (\hat{\mu}_c - \hat{\mu}_g)^{\top}$ represents the within-class and between class scatter respectively, while $\hat{\mu}_c$, \hat{S}_c and N_c , denote the empirical mean, covariance and sample size for class c, respectively.

Removing between-class scatter

→ We remove the between-class scatter and obtain the following formulation for initializaing the classifier weights:

$$W^* = \hat{G}^{-1}B; \quad \hat{G} = \sum_{c=1}^{C} (N_c - 1)\hat{\Sigma}_c + N\hat{\mu}_g\hat{\mu}_g^{\top}.$$

Dataset	G_{btw}	$\mid G_{with} \mid$	Acc.(↑)
CIFAR-100	✓	✓	57.1
	×	✓	57.3
ImageNet-R	√	✓	37.6
	X	✓	38.6
CUB200	√	√	50.4
	X	✓	53.7
Stanford Cars	√	√	41.4
	×	✓	44.8

Federated Learning with COvariances for Free

Algorithm 1 FedCOF: Federated Learning with COvariances for Free

Client-Side (Client *k*):

Input: C: set of all classes, f_{θ} : pre-trained model, $X_{k,c}$: samples of class c in client k, $n_{k,c}$: number of samples in $X_{k,c}$

for
$$c=1$$
 to C do $\hat{\mu}_{k,c}=rac{1}{n_{k,c}}\sum_{x\in X_{k,c}}f_{\theta}(x)$

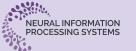
end for

Send the class means $\hat{\mu}_{k,c}$ and sample counts $n_{k,c}$ to the Server

Server-Side:

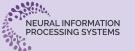
Input:
$$\hat{\mu}_{k,c}$$
, $n_{k,c}$ sent from K clients, $\gamma > 0$
for $c = 1 \dots C$ do

$$\hat{\mu}_{c} = \frac{1}{N_{c}} \sum_{k=1}^{K} n_{k,c} \hat{\mu}_{k,c}; N_{c} = \sum_{k=1}^{K} n_{k,c}$$


$$\hat{\Sigma}_{c} = \frac{1}{K-1} \sum_{k=1}^{K} n_{k,c} (\hat{\mu}_{k,c} - \hat{\mu}_{c}) (\hat{\mu}_{k,c} - \hat{\mu}_{c})^{\top} + \gamma I_{d}, \text{Eq.}(6)$$

end for

$$\hat{\mu}_{g} = \frac{1}{N} \sum_{c=1}^{C} N_{c} \hat{\mu}_{c}, \qquad N = \sum_{c=1}^{C} N_{c}$$


$$B = [\hat{\mu}_{c} N_{c}]_{c=1}^{C}, \quad \hat{G} = \sum_{c=1}^{C} (N_{c} - 1) \hat{\Sigma}_{c} + N \hat{\mu}_{g} \hat{\mu}_{g}^{\top}$$

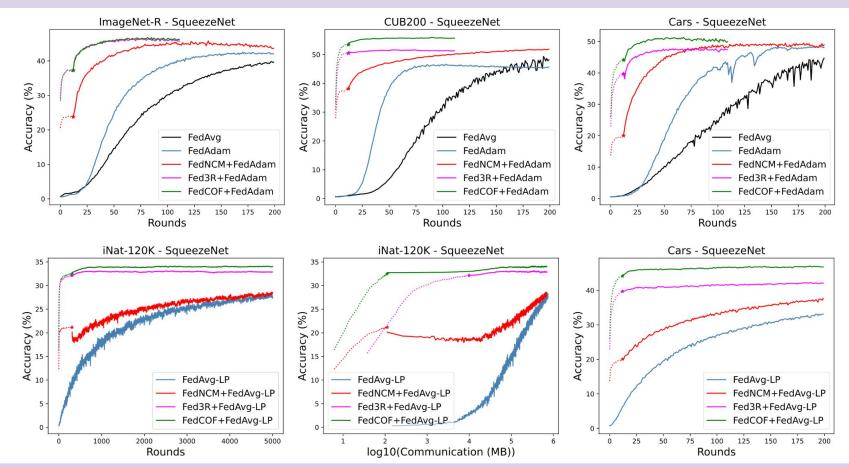
$$W^{*} = \hat{G}^{-1} B, \text{Eq. (8)}$$
Normalize $W^{*}: W_{c}^{*} \leftarrow W_{c}^{*} / \|W_{c}^{*}\| \quad c = 1, \dots, C$

Experiments

		SqueezeNet ($d = 512$)		MobileNetv2 ($d = 1280$)		ViT-B/16 ($d = 768$)	
	Method	Acc (†)	Comm. (\downarrow)	Acc (†)	Comm. (\downarrow)	Acc (†)	Comm. (\downarrow)
CIFAR-100	FedNCM [29]	41.5 ± 0.1	5.9	55.6 ± 0.1	14.8	55.2 ± 0.1	8.9
	Fed3R [11]	56.9 ±0.1	110.2	62.7 ± 0.1	670.1	73.9 ±0.1	244.8
	FedCOF (Ours)	56.1±0.2	5.9	63.5 ±0.1	14.8	73.2±0.1	8.9
	FedCOF Oracle (Full Covs)	56.4±0.1	3015.3	63.9±0.1	18823.5	73.8±0.1	6780.0
	FedNCM [29]	23.8 ± 0.1	7.1	37.6 ± 0.2	17.8	32.3 ± 0.1	10.7
IN-R	Fed3R [11]	37.6 ± 0.2	111.9	46.0 ± 0.3	673.1	51.9 ±0.2	246.6
Z	FedCOF (Ours)	37.8 ±0.4	7.1	47.4 ±0.1	17.8	51.8 ± 0.3	10.7
	FedCOF Oracle (Full Covs)	38.2±0.1	3645.7	48.0±0.3	22758.8	52.7±0.1	8197.4
9	FedNCM [29]	37.8 ± 0.3	4.8	58.3±0.3	12.0	75.7 ± 0.1	7.2
CUB200	Fed3R [11]	50.4 ± 0.3	109.6	58.6 ± 0.2	667.3	77.7 ± 0.1	243.1
	FedCOF (Ours)	53.7 ±0.3	4.8	62.5 ±0.4	12.0	79.4 ±0.2	7.2
	FedCOF Oracle (Full Covs)	54.4±0.1	2472.1	63.1±0.5	15432.7	79.6±0.2	5558.6
Cars	FedNCM [29]	19.8 ± 0.2	5.4	30.0 ± 0.1	13.5	26.2 ± 0.4	8.1
	Fed3R [11]	39.9 ± 0.2	110.2	41.6 ± 0.1	668.8	47.9 ± 0.3	244.0
చ	FedCOF (Ours)	44.0 ±0.3	5.4	47.3±0.5	13.5	52.5 ±0.3	8.1
	FedCOF Oracle (Full Covs)	44.6±0.1	2767.3	47.2±0.3	17275.7	53.1±0.1	6222.5
)K	FedNCM [29]	21.2 ± 0.1	111.8	36.0±0.1	279.5	53.9±0.1	167.7
12	Fed3R [11]	32.1 ± 0.1	9837.3	41.5 ± 0.1	61064.1	62.5 ± 0.1	22050.2
iNat-120K	FedCOF (Ours)	32.5 ± 0.1	111.8	44.1 ±0.1	279.5	63.1 ±0.1	167.7
Ž	FedCOF Oracle (Full Covs)	32.4±0.1	57k	43.6±0.1	358k	62.9±0.1	128k

Experiments

Comparison with prompt-tuning methods


	CIFA	AR-100	IN-R		CUB200		Cars	
Method	Acc (†)	Comm. (\downarrow)						
FedAvg-PT [54]	74.5±0.5	884.7	47.6±1.3	1622.0	37.0 ± 2.0	1622.0	13.6 ± 1.7	1592.5
FedProx-PT [54]	73.6 ± 0.4	884.7	47.9 ± 0.5	1622.0	38.5 ± 0.8	1622.0	13.7 ± 1.5	1592.5
PFPT [54]	75.1 ± 0.5	846.5	50.7 ± 0.2	1794.4	38.6 ± 0.9	1765.5	12.9 ± 1.1	1736.1
FedCOF (Ours)	75.3 ±0.1	8.9	54.9 ±0.2	10.7	65.0 ±0.1	7.2	50.4 ±0.1	8.1

Comparison with training-based methods

Method	Training	ImageNet-R	CUB200	Cars
FedAvg	✓	30.0 ± 0.6	30.3 ± 6.7	24.9±1.6
FedAdam	✓	$38.8 {\pm} 0.6$	46.4 ± 0.8	41.8 ± 0.6
FedNCM	X	$23.8 {\pm} 0.1$	37.8 ± 0.3	19.8 ± 0.2
Fed3R	X	37.6 ± 0.2	50.4 ± 0.3	39.9 ± 0.2
FedCOF (Ours)	X	37.8 ± 0.4	53.7 ± 0.3	44.0 ± 0.3
FedNCM+FedAdam	√	44.7 ± 0.1	50.2±0.2	48.7±0.2
Fed3R+FedAdam	✓	45.9 ± 0.3	51.2 ± 0.3	47.4 ± 0.4
FedCOF+FedAdam	✓	46.0 ±0.4	55.7 ±0.4	49.6 ±0.6

Experiments

Thanks