

From Counterfactuals to Trees: Competitive Analysis of Model Extraction Attacks

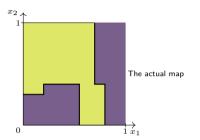
Awa Khouna^{1,2} Julien Ferry^{1,2} Thibaut Vidal^{1,2}

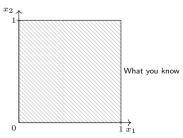
¹Department of Mathematical and Industrial Engineering, Polytechnique Montréal, Montréal, Canada

²CIRRELT & SCALE-AI Chair in Data-Driven Supply Chains,

The Map Riddle

Setup. Imagine a hidden map (a colored map). You can't see the full map.



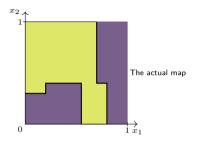


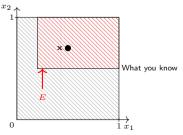
The Map Riddle

Setup. Imagine a hidden map (a colored map). You can't see the full map.

Oracle. For any point \mathbf{x} and rectangle E, the oracle returns the *nearest* point \mathbf{x}' of a different color within E if it exists.

Question. Can repeated queries *exactly* reconstruct the entire map?



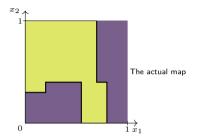


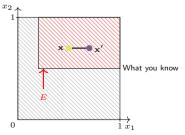
The Map Riddle

Setup. Imagine a hidden map (a colored map). You can't see the full map.

Oracle. For any point x and rectangle E, the oracle returns the *nearest* point x' of a different color within E if it exists.

Question. Can repeated gueries exactly reconstruct the entire map?





Model Extraction Attack

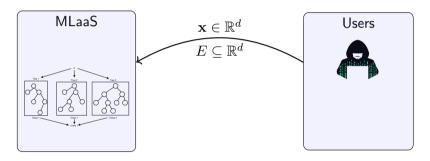


Figure: Model extraction attacks framework.

Model Extraction Attack

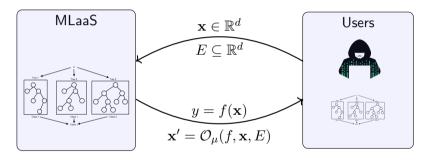


Figure: Model extraction attacks framework.

From the Riddle to the Attack

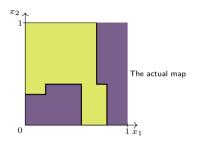
Setup. Imagine a hidden map (a colored map). You can't see the full map.

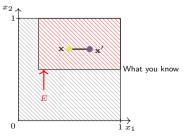
Oracle. For any point \mathbf{x} and rectangle E, the oracle returns the *nearest* point \mathbf{x}' of a different color within E if it exists.

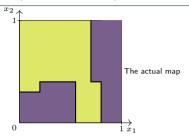
Question. Can repeated queries *exactly* reconstruct the entire map?

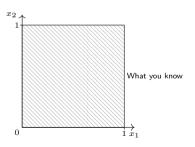
Our analogy: the colored map \leftrightarrow classifier decision regions; oracle \leftrightarrow counterfactual explanation.

Takeaway: Counterfactuals reveal *where* the nearest boundary is. With a smart querying strategy, this can be enough to reconstruct the model.



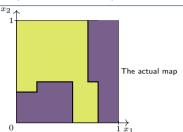


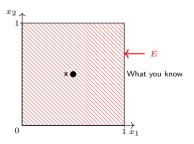




The algorithm in 3 steps:

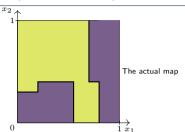
1. Probe center: query (\mathbf{x}, E) .

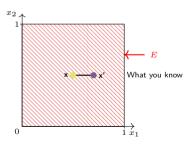




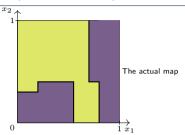
The algorithm in 3 steps:

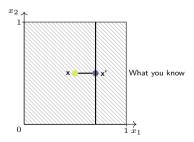
1. Probe center: query (\mathbf{x}, E) .



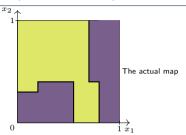


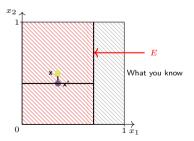
- 1. Probe center: query (\mathbf{x}, E) .
- 2. **Split** E **via CF:** cut on features where $\mathbf{x} \neq \mathbf{x}'$.



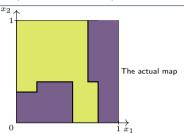


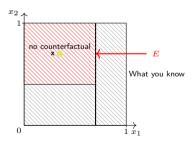
- 1. Probe center: query (\mathbf{x}, E) .
- 2. **Split** E **via CF**: cut on features where $\mathbf{x} \neq \mathbf{x}'$.



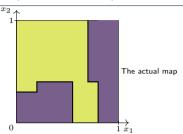


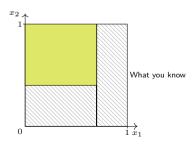
- 1. Probe center: query (\mathbf{x}, E) .
- 2. **Split** E **via CF:** cut on features where $\mathbf{x} \neq \mathbf{x}'$.
- 3. No CF \Rightarrow label E: assign $f(\mathbf{x})$; continue with remaining rectangles (BFS).





- 1. Probe center: query (\mathbf{x}, E) .
- 2. **Split** E **via CF:** cut on features where $\mathbf{x} \neq \mathbf{x}'$.
- 3. No CF \Rightarrow label E: assign $f(\mathbf{x})$; continue with remaining rectangles (BFS).





Theory: Query Complexity & Competitiveness

Let n be the number of split levels and s_i splits on feature i, $\sum_i s_i = n$.

- Worst-case queries: $O\!\!\left(\prod_{i=1}^m (s_i+1)\right) \le O\!\!\left((1+\frac{n}{m})^m\right)$.
- Competitive ratio:

$$C_{\mathsf{TRA}}^{(n,m)} = \frac{2\prod_{i=1}^{m}(s_i+1)-1}{n+1} \le \frac{2(1+\frac{n}{m})^m-1}{n+1}.$$

• **Tight for D&C:** no pure divide-and-conquer method can beat $C_{\mathsf{TRA}}^{(n,m)}$.

Key Insight

CFs provide *precise local boundary* information; TRA converts local probes into a *global reconstruction* with provable efficiency.

Anytime Performance (Fidelity vs Queries)

- TRA reaches 100% fidelity faster (orders of magnitude fewer queries).
- Outperforms CF / DualCF (no functional equivalence) and PathFinding (equivalence but many queries).
- Also works with non-optimal CFs (practical APIs).

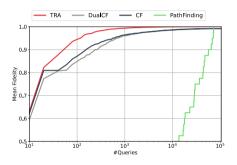
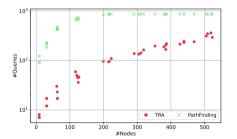


Figure: Mean Fidelity vs Number of queries over 40 trained classifier on Adult dataset

Functional Equivalence: Trees & Forests

- **Decision Trees:** TRA extracts exact decision boundaries with far fewer queries than PathFinding.
- Random Forests: TRA reconstructs an equivalent *tree* with perfect fidelity; *sub-linear* query growth vs nodes (empirically).



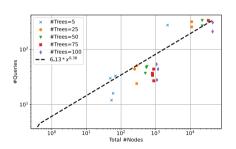


Figure: # Queries vs # Nodes for 40 classifiers.

Figure: # Queries vs # Nodes for 25 trained Random forests.

Implications

- Counterfactual explanations can fully expose tree/ensemble decision boundaries.
- Design challenge: preserve recourse and explainability while limiting leakage.

Towards Safer Explanations

IP-preserving CFs by rate-limiting the oracle, region restrictions or query auditing.

Takeaway

Once you can ask "where is the nearest boundary?", you can reconstruct the **entire map**.

Explainability and Security must be co-designed.

Thank you!

Meet us at our poster at NeurIPS 2025!

Scan for the paper on arXiv

Poster: From Counterfactuals to Trees
Competitive Analysis of Model Extraction
Attacks

₩ednesday, December 3, 2025
 4:30-7:30 p.m. PST
 Exhibit Hall C,D,E - San Diego Convention