Learning Chern Numbers of Multiband Topological Insulators with Gauge Equivariant Neural Networks

Longde Huang, Oleksandr Balabanov, Hampus Linander, Mats Granath Daniel Persson, Jan E. Gerken

NeurIPS 2025

Problem Setting

Topological Insulators

Topological Insulators: Materials that behave as insulators in their bulk but allow current to flow along their boundaries, due to underlying topological invariants (**Chern numbers**).

Tensor formulation

▶ The material: A 2m dimensional periodic grid Λ (Setting m=1 for now)

 \Rightarrow Spatial dimension $N_1 \times N_2 \times \cdots \times N_{2m} = N_{site}$;

Tensor formulation

- ► The material: A 2m dimensional periodic grid Λ (Setting m=1 for now) \Rightarrow Spatial dimension $N_1 \times N_2 \times \cdots \times N_{2m} = N_{site}$;
- ▶ Band: A U(N) frame over M: $\{(U_k^x, U_k^y, W_k)\}_{k \in \Lambda}$ ⇒ Channel dimension $C(m) \times N \times N \times 2$;

Tensor formulation

- ► The material: A 2m dimensional periodic grid Λ (Setting m=1 for now) \Rightarrow Spatial dimension $N_1 \times N_2 \times \cdots \times N_{2m} = N_{site}$;
- ▶ Band: A U(N) frame over M: $\{(U_k^x, U_k^y, W_k)\}_{k \in \Lambda}$ ⇒ Channel dimension $C(m) \times N \times N \times 2$;
- ightharpoonup Chern Number: An integer \tilde{C} :

$$\tilde{C}(\{W_k \mid k \in \Lambda\}) = \frac{1}{2\pi} \sum_{k \in \Lambda} \operatorname{Im} \operatorname{Tr} \log W_k. \tag{1}$$

Tensor formulation

- ▶ The material: A 2m dimensional periodic grid Λ (Setting m=1 for now) \Rightarrow Spatial dimension $N_1 \times N_2 \times \cdots \times N_{2m} = N_{site}$:
- ▶ Band: A U(N) frame over M: $\{(U_k^x, U_k^y, W_k)\}_{k \in \Lambda}$ ⇒ Channel dimension $C(m) \times N \times N \times 2$;
- ightharpoonup Chern Number: An integer \tilde{C} :

$$\tilde{C}(\{W_k \mid k \in \Lambda\}) = \frac{1}{2\pi} \sum_{k \in \Lambda} \operatorname{Im} \operatorname{Tr} \log W_k. \tag{1}$$

► Gauge symmetry:

$$\tilde{C}\left(\left\{W_{k} \mid k \in \Lambda\right\}\right) = \tilde{C}\left(\left\{\Omega_{k}^{\dagger} W_{k} \Omega_{k} \mid k \in \Lambda\right\}\right) \quad \forall \left\{\Omega_{k}\right\}_{k \in \Lambda} \in \mathrm{U}(N)^{N_{x} \times N_{y}}.$$
 (2)

Large Non-Abelian Gauge Symmetry

Gauge Symmetry

$$U_k^{\mu} \sim \Omega_k^{\dagger} U_k^{\mu} \Omega_{k+e_{\mu}}, \quad W_k \sim \Omega_k^{\dagger} W_k \Omega_k$$
 (3)

- ▶ Non-Commutative: Unitary Matrix group.
- ▶ Local: One Unitary group at each grid point; traditional Lie group equivariance techniques (data augmentation, GCNN, etc.) fail.

GEBLNET: Local Gauge-Equivariant Network

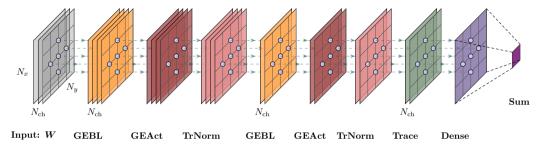


Figure: Architecture of GEBLNET [Favoni et al. 2022]. Each circle represents an independent grid point.

GEBLNET: Local Gauge—Equivariant Network

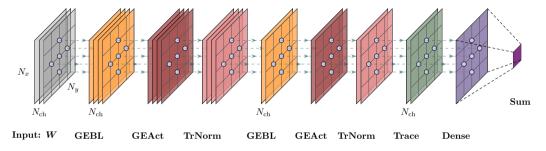


Figure: Architecture of GEBLNET [Favoni et al. 2022]. Each circle represents an independent grid point.

- ightharpoonup Purely local processing: every point k is handled in isolation; no coupling between neighbours during feature extraction.
- ▶ Gauge equivariance: each layer manifestly preserves the gauge transformation and retains the matrix form outputs.

Universal Approximation Theorem with GEBL

Implementation

- ▶ Input: $(W_k^{\lambda}) \in U(N)^{N_{\text{in}} \times N_{\text{site}}}$
- ightharpoonup Step 1: Append identity matrix I to the input set
- **▶** Step 2:

$$W_k^{\prime \gamma} = \sum_{\mu,\nu} \alpha_{\gamma\mu\nu} \ W_k^{\mu} \ W_k^{\nu}$$

Intuition:

Constructs higher-order terms \mathcal{W}^n from lower-order ones and form a polynomial.

Universal Approximation Theorem with GEBL

Implementation

- ▶ Input: $(W_k^{\lambda}) \in U(N)^{N_{\text{in}} \times N_{\text{site}}}$
- ightharpoonup Step 1: Append identity matrix I to the input set
- **▶** Step 2:

$$W_k^{\prime \gamma} = \sum_{\mu,\nu} \alpha_{\gamma\mu\nu} \ W_k^{\mu} \ W_k^{\nu}$$

Intuition:

Constructs higher-order terms W^n from lower-order ones and form a polynomial.

Theorem (UAT for GEBLNET)

Let G be a compact Lie group. Assume the GEAct non-linearity is $\sigma = \tilde{\sigma} \circ \text{Re}$ with $\tilde{\sigma}$ bounded and non-decreasing. Then GEBLNET can approximate any square-integrable conjugation invariant function $F \in L^2_{\text{class}}(G)$ to arbitrary accuracy.

Training Setup

Loss function

Given network output f(W) and discrete Chern number \tilde{C} :

$$L_{\mathrm{g}} = \left\| f(W) - \tilde{C} \right\|_{1}, \qquad L_{\mathrm{std}} = \left\| \min \left(\operatorname{std} \left\{ g(W_{k}) \right\}, \delta \right) - \delta \right\|_{1},$$

with $\delta = 0.5$.

$$L_{\text{total}} = L_{\text{g}} + L_{\text{std}}$$

 $L_{\rm std}$ prevents the network from collapsing to zero-outputs by enforcing point-to-point variation.

Model Capability Test: Band Number

Table: Accuracy on a 5×5 grid. GEBLNET is trained and evaluated for increasing band count N.

Bands N	4	5	6	7	8
Accuracy (%)	95.9	94.0	93.8	91.7	52.5

▶ High accuracy is retained up to N = 7 bands.

Training on Trivial Samples: Problem Statement

Setting

- ▶ Grid 5×5 , N = 4 bands
- ightharpoonup Only topologically trivial samples (C=0)
- ightharpoonup Need $L_{\rm std}$

Result: GEBLNet without TrNorm fails

▶ Most seeds \rightarrow outputs ≈ 0

Trace Explosion

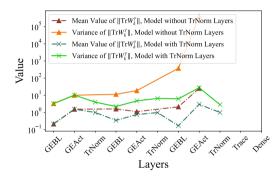


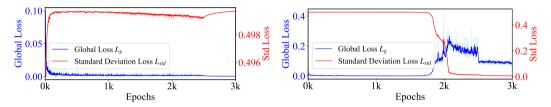
Figure: Statistics of trace per layer, with or without TrNorm

Trace Normalization (TrNorm)

$$W_k^{\gamma} = \frac{W_k^{\gamma}}{\max(\varepsilon, \, \max_{\gamma} \{ | \operatorname{tr} W_k^{\gamma} | \})}$$

- Normalization over each channel so that mean $_{\gamma}\{|\operatorname{tr} W_k^{\gamma}|\}.$
- ► Cancels trace explosion after every GEBL layer.

TrNorm Fixing the collision



Loss curves, seed 83. Left: no TrNorm (collapse). Right: with TrNorm (converges).

- ▶ Turning point (std. loss < 0.49) occurs between 1.3 k-1.9 k epochs for 4/5 seeds.
- ▶ Post-rescale accuracy on non-trivial data 92%−95% (table below).

Higher Order Chern Number

For general 2M dimensional multiband system, the discretized Mth Chern number could be defined as

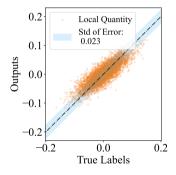
$$\tilde{C}_M = \frac{M!}{(2M)!(\pi i)^M} \sum_k \sum_{\mu_1, \dots, \mu_{2M}} \text{Tr} \epsilon_{\mu_1, \dots, \mu_{2M}} \prod_{t=1}^M \log W_k^{\mu_{2t-1}, \mu_{2t}}.$$
 (4)

Higher Order Chern Number

For general 2M dimensional multiband system, the discretized Mth Chern number could be defined as

$$\tilde{C}_M = \frac{M!}{(2M)!(\pi i)^M} \sum_k \sum_{\mu_1, \dots, \mu_{2M}} \operatorname{Tr} \epsilon_{\mu_1, \dots, \mu_{2M}} \prod_{t=1}^M \log W_k^{\mu_{2t-1}, \mu_{2t}}.$$
 (4)

- ► For M=2 (four spatial dimensions) each point carries $\binom{4}{2}=6$ loops (channels): $W_k^{\mu\nu}$.
- ▶ The approximation is not necessarily integer; evaluation metric is then mean absolute error (MAE), not exact accuracy.



Local quantity-truth comparison

- Points lie close to the line y = x: model reproduces the *local* topological quantity with high precision.
- ► Global MAE≈0.25: well within rounding error of the true second Chern number.

Theorem (Higher-Dimensional UAT for GEBLNET)

Let G be the unitary group U(M). Under the same assumptions on the nonlinearity, GEBLNET can approximate arbitrarily well any square-integrable function $f \in L^2(G^K)$ such that

$$f(g_1, \dots, g_K) = f(hg_1h^{-1}, \dots, hg_Kh^{-1}), \quad \forall h \in G.$$

Conclusion

Our Model

GEBLNET: a gauge-equivariant neural network for predicting Chern numbers of multiband topological insulators.

Key contributions

- ► Theory: universal-approximation theorem: a sufficiently wide GEBLNET can represent any gauge-invariant function (incl. Chern number).
- ▶ Practice: high accuracy up to N = 7 bands.
- ► Architecture: introduced **TrNorm** layer; removes trace explosion and enables learning from topologically trivial data alone.
- ▶ Beyond 2D: extended to 4D grids; MAE ≈ 0.25 on the second Chern number.

Limitations and Future Work

Current gaps

- ▶ 4D discretization is approximate, not strictly integer-valued.
- ► Architecture explored is plain GEBL stacks; no residuals, recurrence, or attention.
- ▶ Generalization to other Lie groups untested.

Next steps

- ► Exact, gauge-invariant discretisations for higher Chern classes.
- ▶ Deeper or transformer-style equivariant blocks for greater expressivity.
- ▶ Broader benchmarks: other symmetry groups, experimental data.

Thank you!