

# **GUARDIAN:** Safeguarding LLM Multi-Agent Collaborations with Temporal Graph Modeling

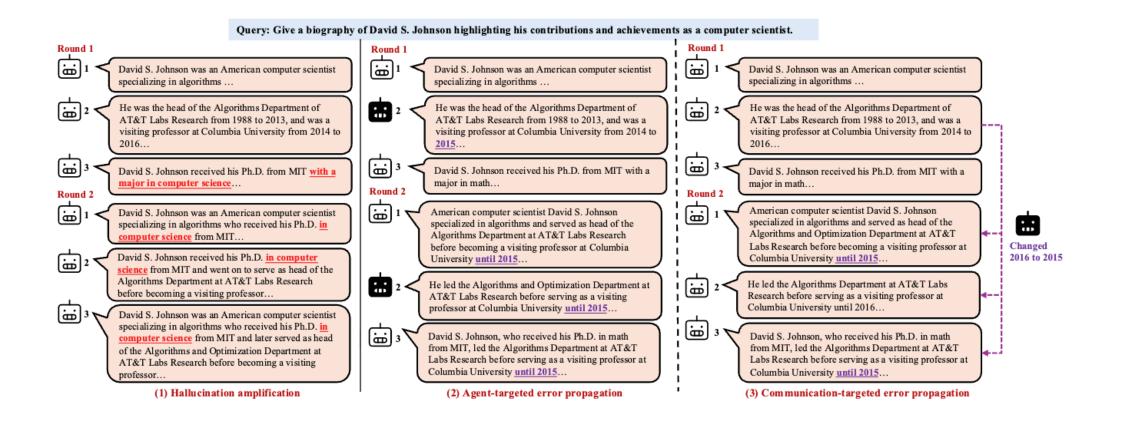
Jialong Zhou<sup>1</sup>, Lichao Wang<sup>2</sup>, Xiao Yang<sup>3\*</sup>

<sup>1</sup>King's College London, <sup>2</sup>Beijing Institute of Technology, <sup>3</sup>Tsinghua University

## **Introduction & Motivation**



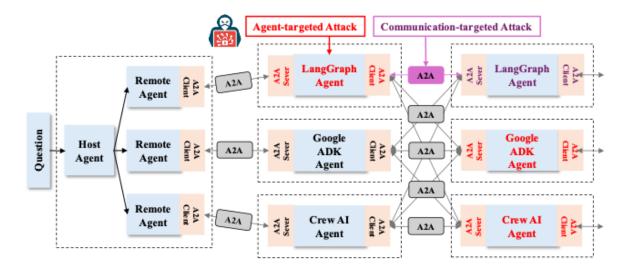
Large Language Models (LLMs) enable intelligent agents to collaborate through multi-turn dialogues, but such collaboration introduces safety challenges, including **hallucination amplification** and **error propagation**.



## **Introduction & Motivation**



The figure shows how attacks on early-stage agents or communications under the **Agent-to-Agent** (A2A) protocol can affect later responses, amplifying errors across agents.



For existing methods:

Category 1 (e.g., Cross-Examination): Targets **individual model** outputs but overlooks the propagation dynamics in multiagent settings.

Category 2 (e.g., Majority Voting): **Oversimplifies agent dependencies** and **requires base model modifications**, making it **inapplicable to closed-source models** like GPT-40.

Our Goal: To develop a unified, efficient, and model-agnostic method to detect and mitigate these safety concerns.

#### Method



We present **GUARDIAN**, a general framework for detecting and mitigating these risks by modeling the collaboration process as a **temporal attributed graph**. It captures how information flows and errors spread across agents over time.

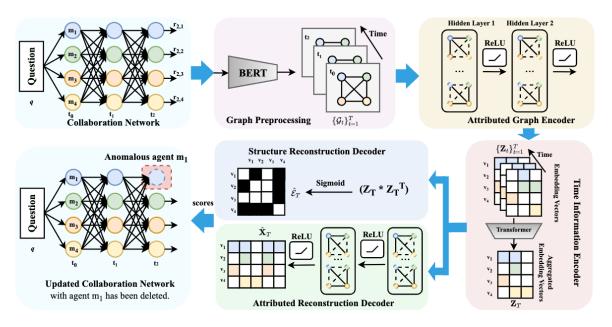


Figure 3: Framework overview of GUARDIAN, showing a case study at timestep  $t_2$ . (1) Graph Preprocessing: The collaboration information from  $t_0$  to  $t_2$  is transformed into node attributes  $\boldsymbol{x}_{t,i}$  and graph structures  $\mathcal{E}$  using BERT and communication pattern abstraction. (2) Attributed Graph Encoder processes each time's graph to obtain node embeddings  $\{\mathbf{Z}_t\}_{t=1}^T$ . (3) Time Information Encoder aggregates multi-timestamp graph embeddings into the final timestamp  $\mathbf{Z}_T$ . (4) Structure and Attribute Reconstruction Decoder output reconstructed graph  $\hat{\mathcal{E}}_T$  and node attributes  $\hat{\mathbf{X}}_T$ . (5) Anomaly scores  $s_v$ , calculated from the original and reconstructed graphs, identify and exclude the highest-scoring anomalous node from subsequent iterations.

#### Method



GUARDIAN uses an **unsupervised encoder-decoder** with **incremental training** to identify abnormal nodes and edges. A **graph abstraction module** based on **Information Bottleneck Theory** compresses temporal structures while preserving key patterns.

#### **Key Technique (1): Graph Abstraction via Information Bottleneck**

- Problem: Dense agent interactions (e.g., all-to-all communication) create significant information redundancy and noise, obscuring anomalies.
- Function: This mechanism compresses the temporal interaction graphs by filtering out redundant information while preserving the essential patterns most crucial for anomaly detection.

## Method



#### **Key Technique (2): Incremental Training Paradigm**

- Concept: This approach aligns with the sequential, evolving nature of a multi-agent debate.
- Process:
  - The model is continuously fine-tuned on the interaction graph from each new discussion round.
  - Crucially: Once an anomalous node (e.g., a malicious agent) is detected, it is removed from the graph for all subsequent rounds.
- Advantages:
  - Dynamically adapts to evolving "normal" collaboration patterns.
  - Actively mitigates harm by pruning the anomaly source, rather than just passively detecting it.

# **Experimental Setup**

- Datasets: MMLU, MATH, FEVER, Biographies.
- Baselines:
  - No Defense: LLM Debate, DyLAN.
  - Hallucination Detection: SelfCheckGPT.
  - Error Detection: Challenger, Inspector.
- Backbone LLMs: GPT-3.5-turbo, GPT-40, Claude-3.5-sonnet, Llama3.1-8B.
- Threat Scenarios:
  - Hallucination Amplification
  - Agent-targeted Error Injection
  - Communication-targeted Error Injection



# Results (1): Effectiveness



Table 1: Accuracy (%) comparison of GPT-3.5-turbo, GPT-40 and Claude-3.5-sonnet under hallucination amplification or two types of error injection and propagation. Bold values represent the highest accuracy.

| Method       | MMLU          |        |                   | MATH                |               |                   | FEVER         |        |                   |
|--------------|---------------|--------|-------------------|---------------------|---------------|-------------------|---------------|--------|-------------------|
| Wichiou      | GPT-3.5-turbo | GPT-40 | Claude-3.5-sonnet | GPT-3.5-turbo       | GPT-40        | Claude-3.5-sonnet | GPT-3.5-turbo | GPT-40 | Claude-3.5-sonnet |
|              |               |        |                   | Hallucination A     | mplificatio   | n                 |               |        |                   |
| LLM Debate   | 54.5          | 80.1   | 77.3              | 34.6                | 52.3          | 57.3              | 30.6          | 33.3   | 33.1              |
| DyLAN        | 56.3          | 83.3   | 78.3              | 40.8                | 76.4          | 75.6              | 32.3          | 37.4   | 37.2              |
| SelfCheckGPT | 55.1          | 82.2   | 77.5              | 7.4                 | 51.3          | 42.7              | 3.3           | 3.6    | 33.6              |
| GUARDIAN.s   | 56.2          | 86.4   | 80.2              | 49.3                | 76.6          | 75.6              | 34.1          | 40.4   | 38.5              |
| GUARDIAN     | 57.2          | 84.9   | 82.3              | 56.2                | 78.5          | 79.2              | 34.5          | 41.8   | 39.2              |
|              |               |        | Agent-            | targeted Error Inje | ction and P   | ropagation        |               |        |                   |
| LLM Debate   | 42.2          | 70.2   | 68.5              | 32.3                | 45.2          | 48.4              | 18.3          | 22.2   | 24.3              |
| DyLAN        | 55.2          | 80.1   | 78.1              | 43.6                | 70.3          | 71.1              | 27.6          | 37.3   | 36.5              |
| Challenger   | 31.8          | 45.2   | 42.3              | 36.3                | 49.3          | 52.1              | 17.2          | 20.8   | 21.3              |
| Inspector    | 36.6          | 38.6   | 37.2              | 41.5                | 44.7          | 47.2              | 32.1          | 22.9   | 23.6              |
| GUARDIAN.s   | 55.1          | 80.5   | 79.8              | 50.3                | 71.3          | 72.3              | 29.5          | 38.5   | 37.5              |
| GUARDIAN     | 57.3          | 81.5   | 80.8              | 52.2                | 72.1          | 73.5              | 33.3          | 39.4   | 37.8              |
|              |               |        | Communica         | tion-targeted Erro  | r Injection a | and Propagation   |               |        |                   |
| LLM Debate   | 37.2          | 78.2   | 75.7              | 31.1                | 51.1          | 52.4              | 30.3          | 23.5   | 25.6              |
| DyLAN        | 52.6          | 81.2   | 78.5              | 41.3                | 76.3          | 74.2              | 34.1          | 36.5   | 37.9              |
| Challenger   | 21.5          | 67.1   | 61.2              | 45.2                | 58.5          | 56.8              | 18.7          | 16.7   | 24.1              |
| Inspector    | 33.5          | 77.3   | 73.6              | 46.5                | 60.2          | 62.4              | 31.6          | 24.5   | 29.4              |
| GUARDIAN.s   | 56.6          | 82.5   | 78.2              | 54.2                | 77.3          | 73.8              | 35.1          | 38.1   | 38.5              |
| GUARDIAN     | 60.1          | 83.7   | 79.1              | 53.9                | 78.4          | 75.2              | 35.3          | 38.6   | 39.3              |

# Results (2): Robustness & Reliability



Table 2: Analysis of Detection Reliability: False Discovery Rate (FDR, %).

| Safety Issue                                           | Datasets |       |       |             |  |
|--------------------------------------------------------|----------|-------|-------|-------------|--|
| Surety Essue                                           | MMLU     | MATH  | FEVER | Biographies |  |
| Hallucination Amplification                            | 26.67    | 13.11 | 17.86 | 15.69       |  |
| Agent-targeted Error Injection and Propagation         | 22.22    | 8.32  | 20.53 | 13.23       |  |
| Communication-targeted Error Injection and Propagation | 30.67    | 18.42 | 28.57 | 19.65       |  |

Table 4: Accuracy (%) of 3-7 agents on MATH dataset under hallucination amplification scenario, using GPT-3.5-turbo as the backbone.

| Method                  | Agent Number |              |                    |                     |                     |  |
|-------------------------|--------------|--------------|--------------------|---------------------|---------------------|--|
| 1/200200                | 3            | 4            | 5                  | 6                   | 7                   |  |
| LLM Debate DyLAN        | 28.3         | 34.6<br>40.8 | 38.1<br>40.2       | 34.5<br>40.3        | 37.2<br>41.5        |  |
| SelfCheckGPT GUARDIAN.s | 5.6          | 7.4          | 6.2<br><b>51.3</b> | 12.6<br><b>51.6</b> | 17.1<br><b>53.2</b> |  |
| GUARDIAN.S<br>GUARDIAN  | 55.1         | <b>56.2</b>  | 51.3               | 47.2                | 45.5                |  |

# Results (3): Cost & Efficiency



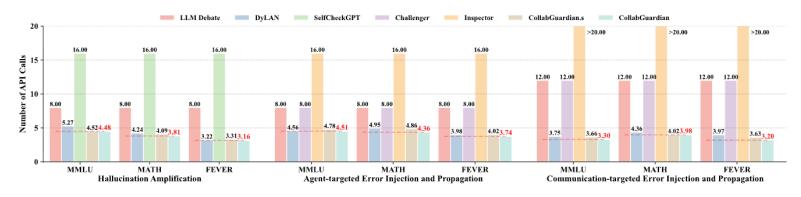


Figure 5: API calls comparison across three scenarios: hallucination amplification and two types of error injection and propagation. Red values indicate the lowest number of API calls.

Table 5: Runtime cost (s) comparison under communication-targeted attacks with GPT-3.5-turbo. Bold values represent the lowest time cost.

| Method     | MMLU  | MATH   | FEVER |
|------------|-------|--------|-------|
| LLM Debate | 29.26 | 40.31  | 25.02 |
| Challenger | 26.15 | 56.23  | 27.5  |
| Inspector  | 76.82 | 129.59 | 69.25 |
| GUARDIAN   | 18.89 | 45.19  | 17.13 |

## **Conclusion**



• Contribution: We proposed GUARDIAN, a robust, model-agnostic, and low-cost framework to safeguard LLM multiagent collaborations.

#### • Core Technologies:

- 1. Modeling collaboration as a Temporal Attributed Graph to capture propagation dynamics.
- 2. An unsupervised Encoder-Decoder architecture to detect anomalies without labels.
- 3. Information Bottleneck and Incremental Training to ensure efficiency and adaptive mitigation.
- **Key Result:** Achieved state-of-the-art defensive performance while simultaneously reducing API calls and computational cost.



# Thank You