

OmniZoom: A Universal Plug-and-Play Paradigm for Cross-Device Smooth Zoom Interpolation

Xiaoan Zhu*

Zhejiang University xiaoanzhu@zju.edu.cn

Jiaming Guo

Huawei Noah's Ark Lab guojiaming5@huawei.com Yue Zhao*

Huawei Noah's Ark Lab zhaoyue53@huawei.com

Yulan Zeng

Sungkyunkwan University zengyulan@skku.edu Tianyang Hu

Zhejiang University huty@zju.edu.cn

Renjing Pei

Huawei Noah's Ark Lab peirenjing@huawei.com

Fenglong Song

Huawei Noah's Ark Lab songfenglong@huawei.com Huajun Feng[†]

Zhejiang University fenghj@zju.edu.cn

Introduction -- Zoom interpolation (ZI)

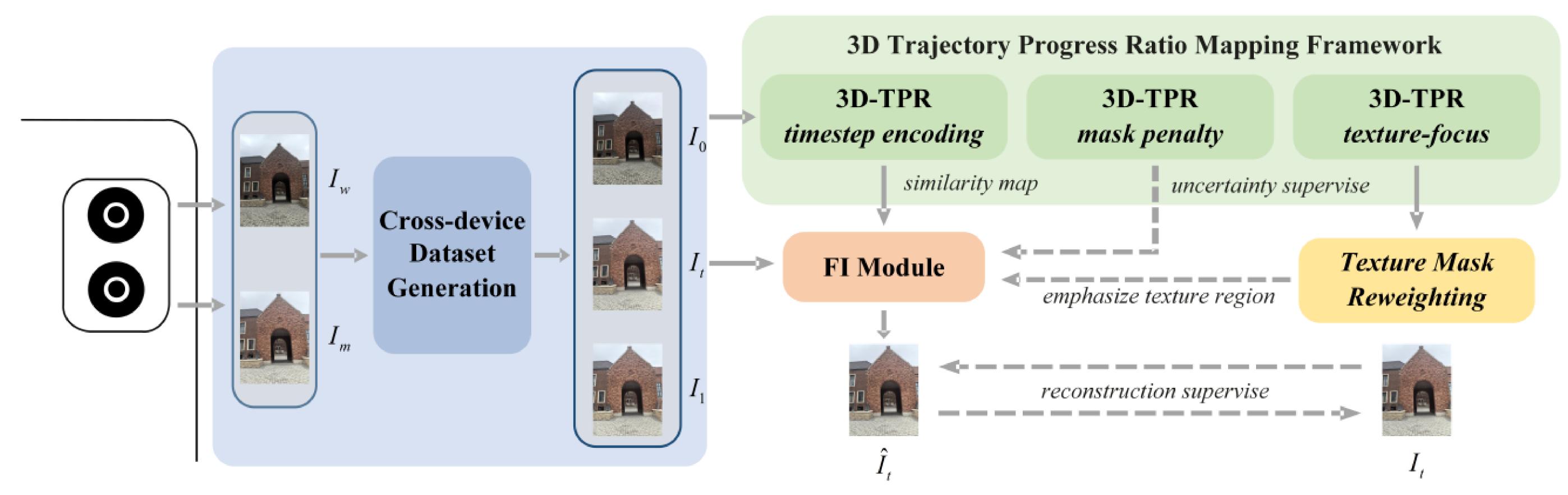
Main camera image

Wide-angle camera image

Merged camera image

>Key Challenges of Zoom Interpolation (ZI) vs. Frame Interpolation (FI)

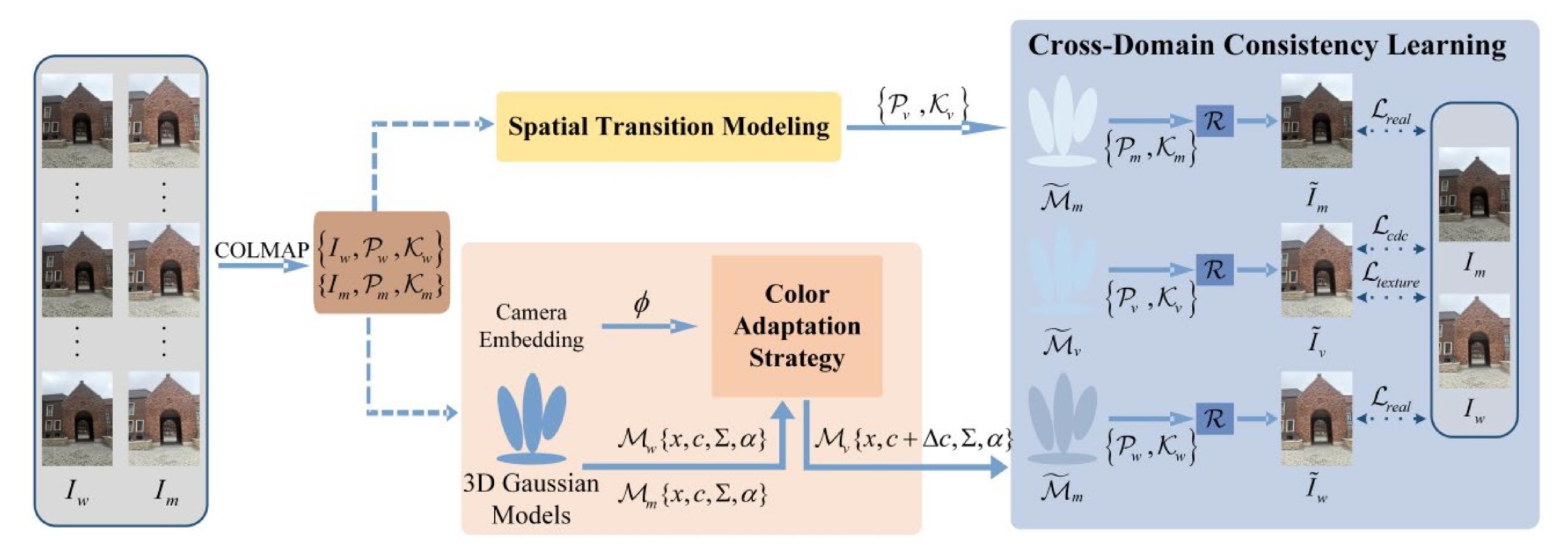
Lack of Dense Supervision


□Core Issue: Absence of suitable ground-truth intermediate frames for training.

• Inherent Motion Ambiguity

□Core Issue: Severe motion ambiguity that violates the linear motion assumption in FI.

Pipeline -- OmniZoom


OmniZoom: Plug-and-play integration pipeline for crossdevice ZI.

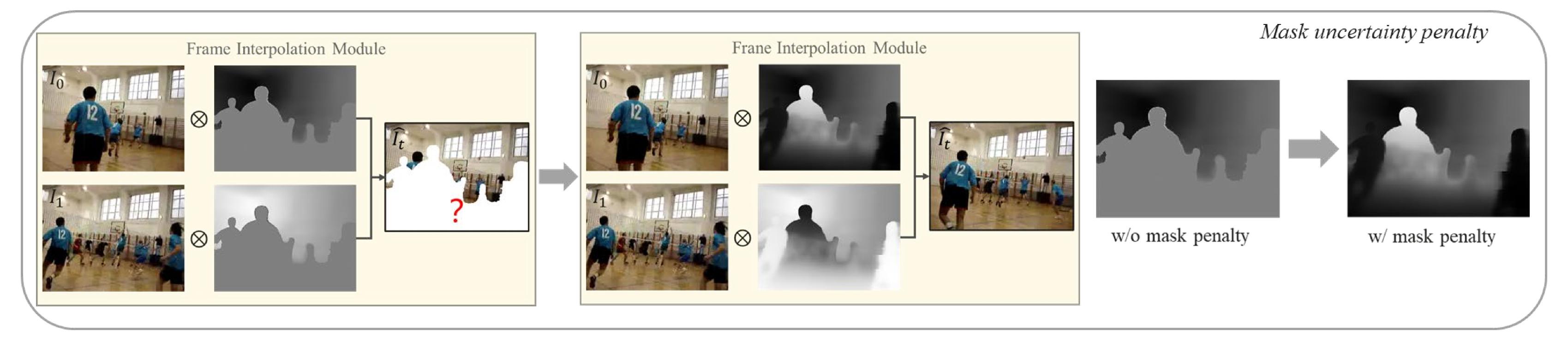
> Key Contributions:

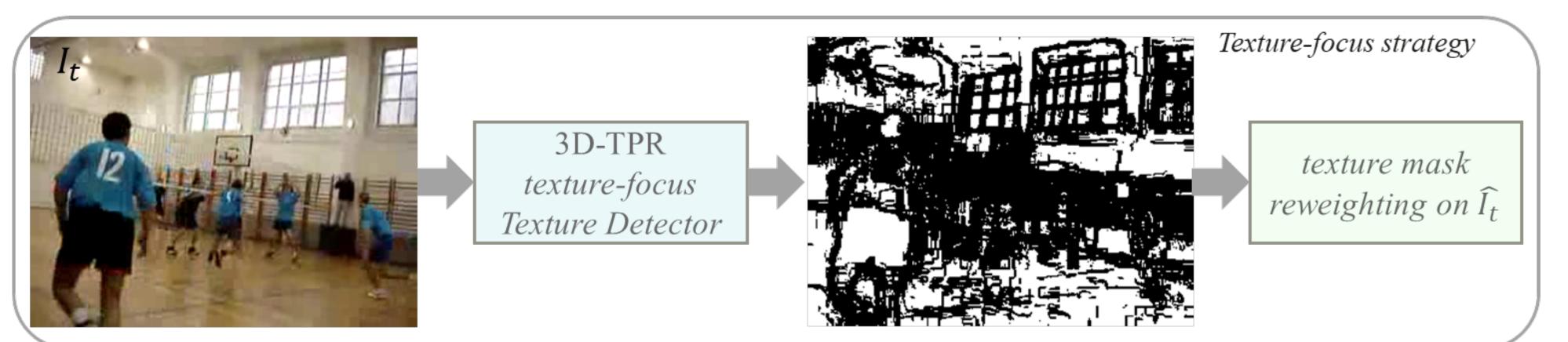
- A novel ZI dataset pipeline that models cross-device inconsistencies to enable high-quality, device-agnostic supervision.
- The 3D-TPR framework that leverages disparity-aware encoding, texture focusing, and a mask penalty for superior perceptual quality.
- OmniZoom, a universal paradigm that seamlessly integrates with FI networks for robust, high-quality zoom interpolation across diverse devices.

Method -- Cross-device Data Generation

Dual-camera ZI dataset generation via spatial-color calibration and cross-domain optimization.

Sample triplets from our ZI dataset, each showing the wide-angle I_w , the synthetic intermediate frame I_v , and the main camera image I_m , for two devices: Huawei and Redmi.




Our data generation method compared to 3DGS and ZoomGS

Method -- 3D-TPR Framework

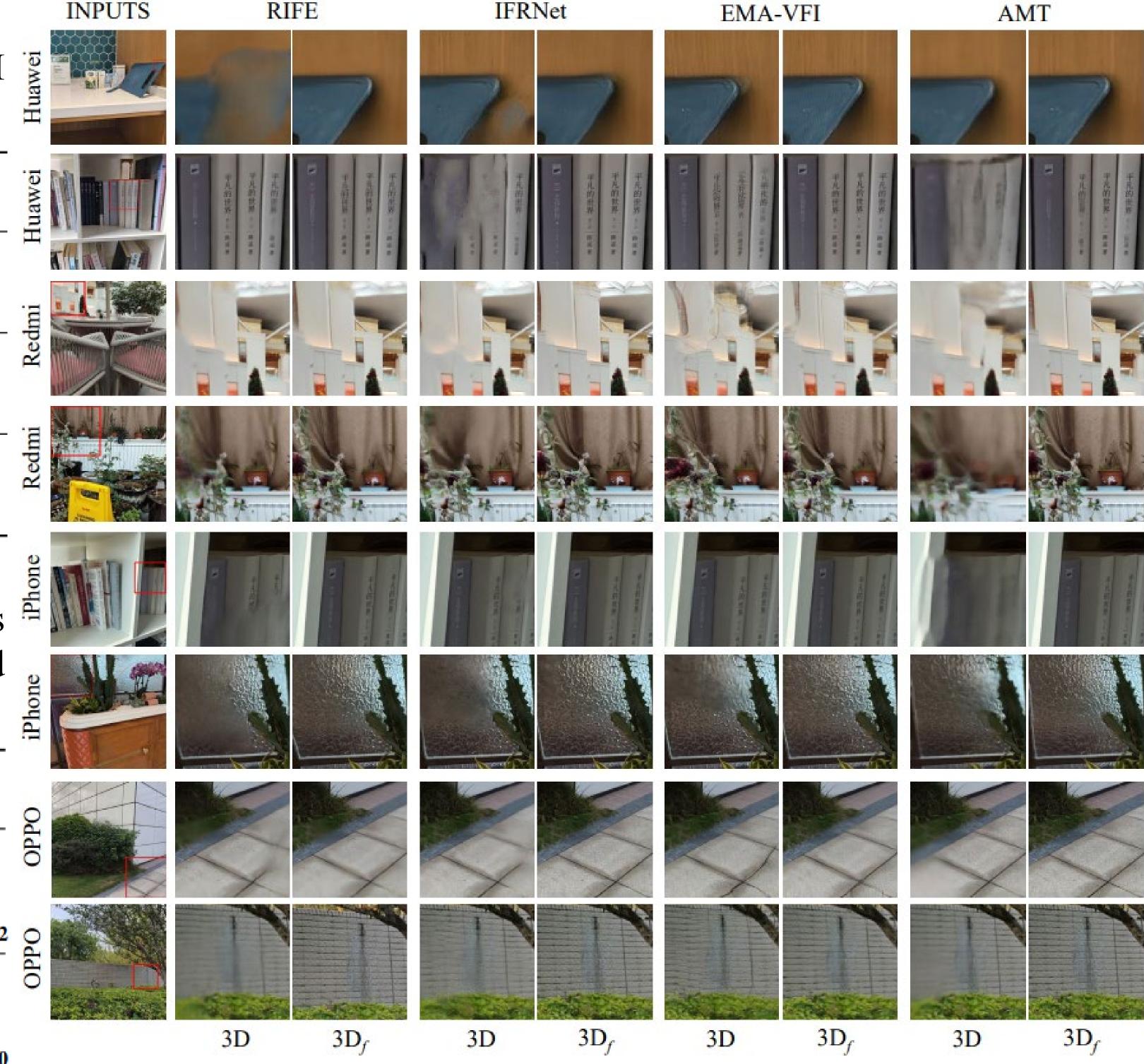
- > 3D Similarity for Timestep Input
- > Uncertainty Suppression for Blur Reduction
- > Gradient Reprojection for Edge Enhancement

Results

Quantitative results

Qualitative results

RIFE


INPUTS

Comparisons on Vimeo90k, Inter4K and UCF101 using 2D and 3D-TPR FI frameworks. **Bold** indicates the best metric. frameworks. **Bold** indicates the best metric.

Benchmarks	Metrics	RIFE		IFRNet		EMA-VFI		AMT	
		2D	3D-TPR	2D	3D-TPR	2D	3D-TPR	2D	3D-TPR
	PSNR↑	27.40	27.51	27.13	27.21	24.73	24.86	27.17	27.22
Vimeo90k	SSIM↑	0.901	0.902	0.899	0.901	0.851	0.853	0.902	0.902
	$LPIPS\downarrow$	0.086	0.081	0.078	0.074	0.081	0.080	0.081	0.084
	PSNR↑	33.92	34.06	33.73	33.72	30.06	30.29	33.57	33.80
inter4K	SSIM↑	0.951	0.952	0.952	0.952	0.903	0.904	0.953	0.955
	$LPIPS \downarrow$	0.048	0.046	0.046	0.045	0.044	0.044	0.953 0.048	0.047
	PSNR↑	35.54	35.85	35.42	35.43	36.74	36.65	35.37	35.33
UCF101	SSIM↑	0.928	0.983	0.984	0.986	0.984	0.985	0.984	0.984
	$LPIPS \downarrow$	0.017	0.018	0.017	0.017	0.012	0.012	0.018	0.017

Comparisons on real-world data across four FI models. Subscript f denotes models finetuned on our ZI dataset. Bold indicates the best performance, and underline is the second best.

Device	Metrics	RIFE			IFRNet			EMA-VFI			AMT		
		2D	3D	$3D_f$									
	NIQE↓	3.8464	3.8651	3.7422	3.6801	3.4852	3.5035	3.6363	3.8470	3.8341	3.5665	3.6459	3.4547
Huawei	PI↓	4.2505	4.1537	3.9360	3.9570	3.3150	3.2520	3.7240	3.8566	3.8467	3.5147	3.6132	3.3121
1144,101	CLIP-IQA↑	0.3691	0.4939	0.5233	0.5422	0.5784	0.5909	0.5612	0.5621	0.5684	0.5428	0.5498	0.6018
	MUSIQ↑	44.8268	<u>58.8362</u>	60.8585	57.4632	73.0233	74.1220	61.7263	62.7403	63.5048	71.4369	71.7016	73.7092
iPhone	NIQE↓	4.2031	4.1027	3.8601	3.8786	3.6923	3.6953	3.8155	4.0555	4.0934	3.5932	3.7053	3.5087
	PI↓	4.5340	4.3503	4.0657	4.2090	3.3942	3.3165	3.9994	4.1304	4.1123	3.4293	3.5367	3.2661
	CLIP-IQA↑	0.4821	0.5366	0.5492	0.5240	0.5829	0.5949	0.5352	0.5387	0.5503	0.5931	0.5930	0.6211
	MUSIQ†	55.0577	<u>59.6800</u>	60.7988	57.4088	73.3569	73.8292	58.1422	<u>58.6204</u>	60.1002	71.9805	<u>72.1243</u>	73.6150
	NIQE↓	4.6364	4.6100	4.3968	4.5820	5.2039	5.1133	4.5568	4.5166	4.5071	4.9042	5.3017	4.6699
OPPO	PI↓	5.0848	5.0104	4.6815	4.9749	4.9603	4.7144	4.9569	4.9022	4.8752	4.9676	5.3808	4.5702
	CLIP-IQA↑	0.4989	0.5363	0.5830	0.5525	0.5212	0.5461	0.5622	0.5590	0.5591	0.4798	0.4518	0.5595
	MUSIQ†	63.2645	<u>65.7912</u>	67.1494	67.2635	<u>75.2718</u>	75.4545	67.4327	<u>67.5921</u>	67.6444	73.0842	72.1563	75.2187
Redmi	NIQE↓	5.0138	4.8764	4.4720	5.0098	4.2837	4.0695	4.4088	4.3424	3.8852	5.1925	4.7426	3.9835
	PI↓	5.3615	5.0247	4.5195	5.1108	3.5993	3.3880	4.6708	4.5974	4.5519	5.4335	4.0235	3.3548
	CLIP-IQA↑	0.4077	0.4664	0.4930	0.4219	0.4913	0.5152	0.4599	0.4807	0.4947	0.4336	0.4754	0.5383
	MUSIQ↑	56.3870	<u>61.9235</u>	63.6990	57.5453	73.7573	74.3871	57.0371	<u>59.6610</u>	60.7579	57.6671	71.9982	74.3325

IFRNet

- > Conclusion: We propose OmniZoom, a universal ZI solution that bridges pre-trained models and real-world devices via a novel dataset and the 3D-TPR framework.
- > Limitation: Its plug-and-play deployment may require lightweight, model-aware training tweaks for optimal performance.