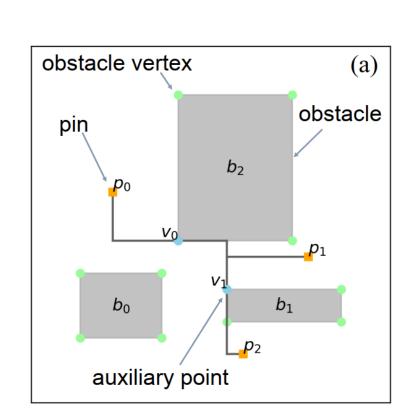
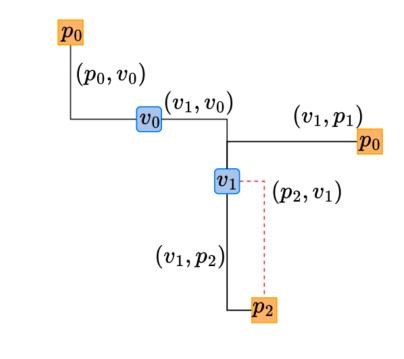
Train on Pins and Test on Obstacles for Rectilinear Steiner Minimum Tree

Xingbo Du, Ruizhe Zhong, Junchi Yan

School of Computer Science & School of Artificial Intelligence,

Shanghai Jiao Tong University





Rectilinear Steiner Minimum Tree (RSMT)

The objective of Obstacle-Avoiding RSMT:

To Connect all given pins using only horizontal and vertical segments with minimum wirelength and avoiding any obstacles.

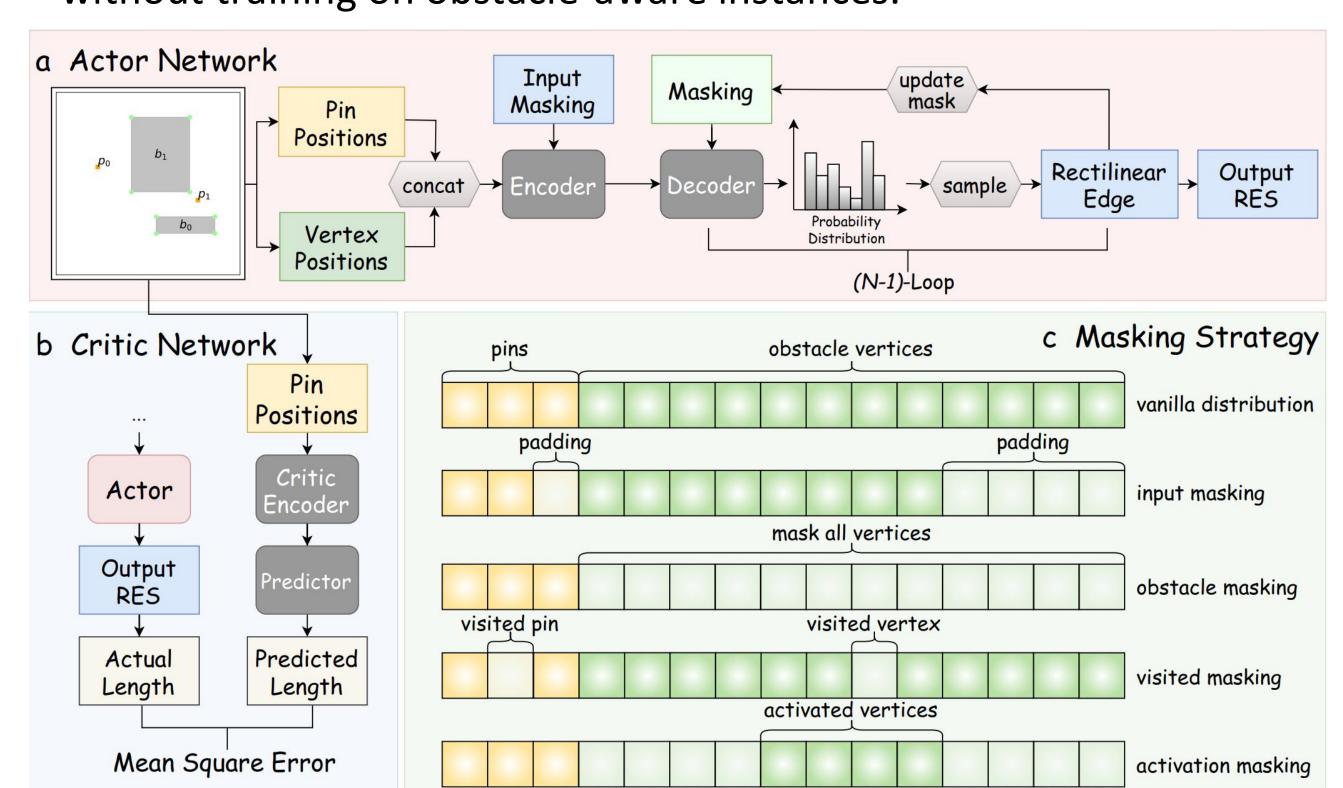
Components in obstacleavoiding RSMT problems

Rectilinear Edge Sequence (RES)

Comparisons to Existing RSMT solvers

Method	Representation	End-to-End	Multi-Degree GPU-Parallelization	Obstacle Avoidance
REST [5]	RES (Optimal)	\checkmark	×	×
EPST [6]	EPS	\checkmark	×	×
Chen et al. [7]	Steiner Points	×	\checkmark	\checkmark
Lin et al. [8]	OASG + SPF	×	\checkmark	\checkmark
Chen et al. [9]	Steiner Points	×	\checkmark	\checkmark
OAREST (ours)	RES (Optimal)	✓	✓	✓

Based on optimal representations, OAREST performs an end-toend solver, handling multi-degree GPU-parallelization and obstacle avoidance.

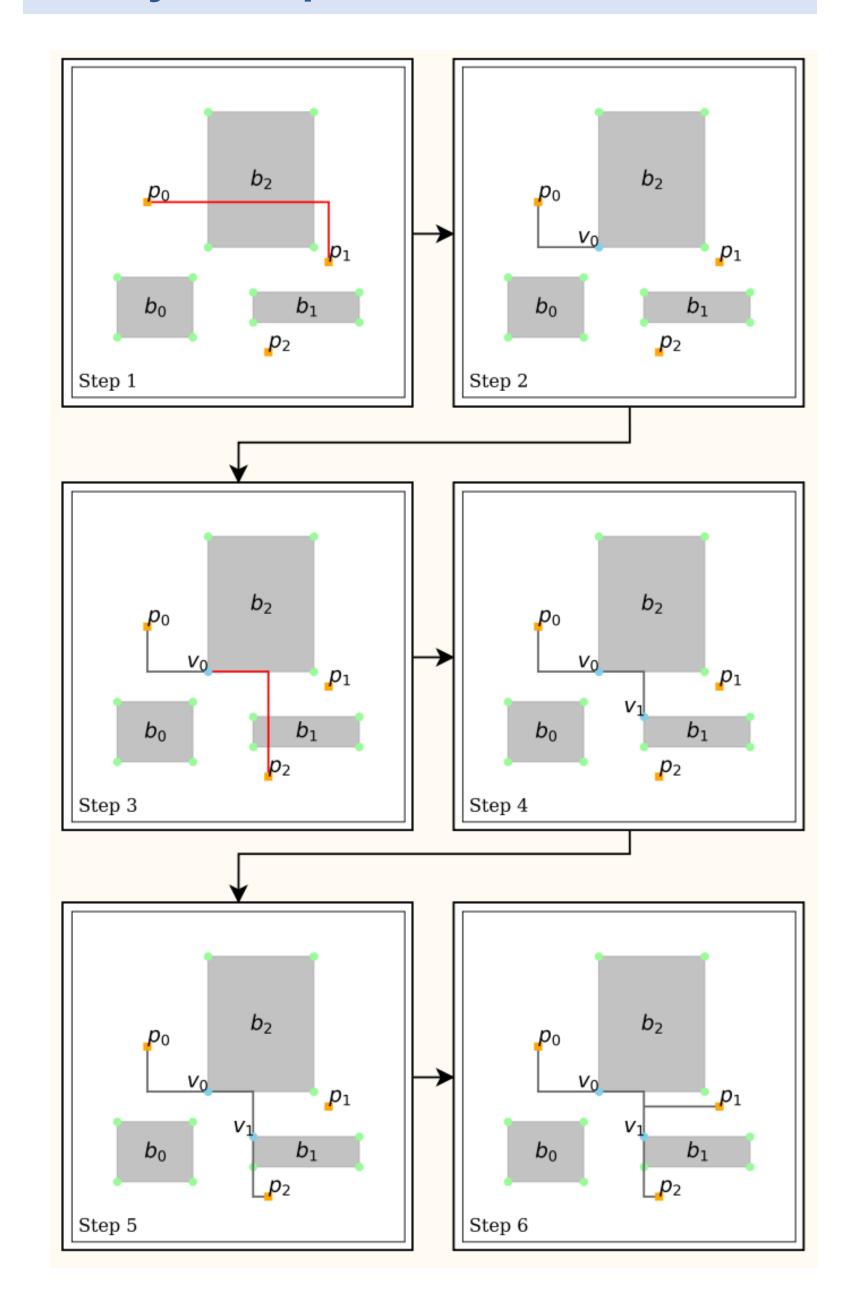

Optimality of RES in OARSMT

Theorem: For any set of pins $\mathcal{P} = \{p_0, p_1, \cdots, p_{n-1}\}$ and a set of rectangular obstacles $\mathcal{O} = \{o_0, o_1, \cdots, o_{m-1}\}$, an optimal RES of $\mathcal{P} \cup \mathcal{V}'(\mathcal{O})$ can always be found such that its corresponding tree is an optimal OARSMT for \mathcal{P} under obstacles \mathcal{O} . Here, $\mathcal{V}'(\mathcal{O}) \subset \mathcal{V}(\mathcal{O})$ is a subset of the corner vertices of all obstacles.

Propose an RL framework with dynamic masking strategy

Based on the optimal RES representation in OARSMT, we propose an RL-based learning framework following REST [1] and design a dynamic masking strategy to make two main contributions:

- Handle multi-degree GPU-parallelization.
- Avoid obstacles by dynamically activate corner points during inference without training on obstacle-aware instances.


Experiments

Comparable average percentage error (%) to SOTA baselines.

Instances	GeoSteiner	R-MST	BGA	FLUTE [19]		REST [5]		OAREST
Histalices	[16]	[17]	[18]	A = 3*	A = 18*	T = 1*	T = 8*	(ours)
R5	0.00	10.91	0.23	0.00	0.00	0.02	0.00	$\boxed{ \textbf{0.00} \pm \textbf{0.000} }$
R10	0.00	11.96	0.48	0.12	0.04	0.23	0.01	$\textbf{0.01} \pm \textbf{0.000}$
R15	0.00	12.19	0.53	0.55	0.06	0.45	0.03	$\textbf{0.03} \pm \textbf{0.001}$
R20	0.00	12.41	0.57	1.03	0.11	0.56	0.07	$\textbf{0.06} \pm \textbf{0.001}$
R25	0.00	12.47	0.58	1.44	0.18	0.69	0.12	$\textbf{0.10} \pm \textbf{0.001}$
R30	0.00	12.56	0.60	1.83	0.23	0.77	0.16	$\textbf{0.15} \pm \textbf{0.004}$
R35	0.00	12.63	0.62	2.13	0.26	0.84	0.21	$\textbf{0.19} \pm \textbf{0.002}$
R40	0.00	12.65	0.63	1.05	0.29	0.86	0.25	$\textbf{0.24} \pm \textbf{0.001}$
R45	0.00	12.67	0.63	1.07	0.30	0.98	0.32	0.31 ± 0.002
R50	0.00	12.72	0.64	1.12	0.29	1.01	0.36	0.36 ± 0.001

^{*} A=3/18 and T=1/8 are different versions of FLUTE and REST, which we illustrate in Appendix B.2.

A toy example

Reference

[1] J. Liu, G. Chen, and E. F. Young. Rest: Constructing rectilinear steiner minimum tree via reinforcement learning. In 2021 58th ACM/IEEE Design Automation Conference (DAC), pages 1135–1140. IEEE, 2021.

Code Available

https://github.com/Thinklab-SJTU/EDA-AI/tree/main/OAREST

