InfMasking: Unleashing Synergistic Information by Contrastive Multimodal Interactions

Liangjian Wen^{1,2}, Qun Dai¹, Jianzhuang Liu³, Jiangtao Zheng¹, Yong Dai⁴, Dongkai Wang¹, Zhao Kang⁵, Jun Wang¹, Zenglin Xu^{6,7}, Jiang Duan¹

¹ Southwestern University of Finance and Economics

² Engineering Research Center of Intelligent Finance, Ministry of Education

³ Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences ⁴ X-Humanoid

⁵ University of Electronic Science and Technology of China ⁶ Shanghai Academy of AI for Science

⁷ Artificial Intelligence Innovation and Incubation Institute, Fudan University

• Background

Method

• Experimental Results

• Background

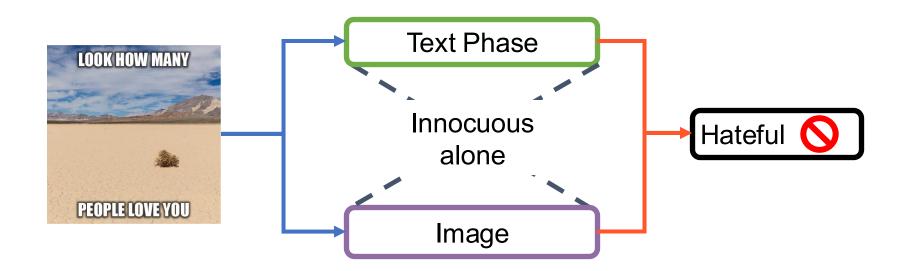
Method

• Experimental Results

Multimodal Interactions

Three fundamental Interactions:

- Redundancy: modality independence via shared info
- Uniqueness: exclusive modality info for task
- Synergy: combined modalities for complementary outcome



Multimodal Interactions Problems

• Existing multimodal contrastive learning methods mostly rely on the following assumption:

Definition 1 (Multi-view redundancy) $\exists \varepsilon > 0$ such that $I(Y; X_1 | X_2) < \varepsilon$ and $I(Y; X_2 | X_1) < \varepsilon$.

This assumption only enables the model to learn the redundant information R.

• Recent works have attempted to learn full multimodal interactions, yet they primarily emphasize enhanced redundant and unique interactions (R & U).

• Background

Method

• Experimental Results

Preliminaries

- Consider two modalities X_1 and X_2 and a task Y
- According to PID, the mutual information $I(X_1, X_2; Y)$ can be decomposed as:

$$I(X_1, X_2; Y) = R + S + U_1 + U_2,$$

where R represents redundant information, S represents synergistic information and U1 and U2 represent unique information specific to X1 and X2, respectively

• This decomposition is supported by consistency equations derived from the chain rule of mutual information:

$$I(X_1;Y) = R + U_1$$
, $I(X_2;Y) = R + U_2$, $I(X_1;X_2;Y) = R - S$,

Preliminaries

- In self-supervised learning, Y remains unspecified, , presenting a unique challenge
- Multimodal Redundancy Assumption:

Assumption 1 (*Minimal label-preserving multimodal augmentations*) A set \mathcal{T}^* of multimodal transformations exists, such that for any $t \in \mathcal{T}^*$ and X' = t(X), the mutual information I(X;X') = I(X;Y) holds, preserving the information with label Y.

- Defining a multimodal latent variable $Z_{\theta} = f_{\theta}(X)$ and $Z'_{\theta} = f_{\theta}(X')$.
- Considering the Markov chains: $X \to X' \to Z'_{\theta}$ and $Z'_{\theta} \to X \to Z_{\theta}$, we can establish the following mutual information bounds:

$$I(Z_{\theta}; Z'_{\theta}) \leq I(X; Z'_{\theta}) \leq I(X; X').$$

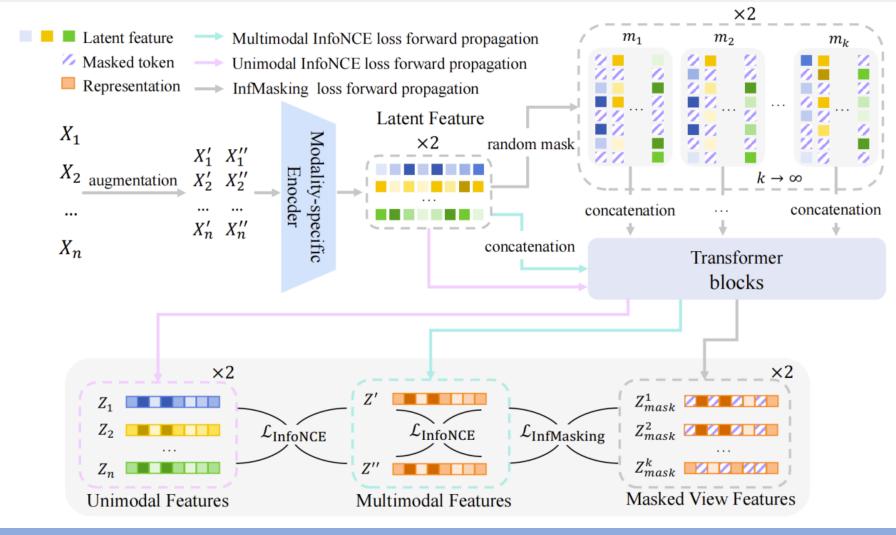
Preliminaries

• According to these inequalities and Assumption 1, we can prove the following lemmas

Lemma 1 When optimizing the function f_{θ} to maximize mutual information $I(Z_{\theta}; Z'_{\theta})$, and under the assumption that the network f_{θ} possesses sufficient expressivity, we observe that in the optimal parameter configuration: $I(Z_{\theta^*}, Z'_{\theta^*}) = I(X, X') = I(X, Y)$.

Lemma 2 Suppose f_{θ^*} is optimal, meaning it maximizes $I(Z_{\theta^*}, Z'_{\theta^*})$. Then, the equality $I(Z_{\theta^*}, Y) = I(X', Y)$ holds. For the special case where $T = \{t_i\}$ such that $X' = t_i(X) = X_i$ and $Z'_{\theta^*} = f_{\theta^*}(X) = Z_i$ for $i \in \{1, 2\}$, the following holds: $I(Z_i; Y) = I(X_i; Y) = R + U_i$.

Overview of InfMasking framework



$$\mathcal{L}_{\text{Total loss}} = -\underbrace{\hat{I}_{\text{NCE}}(Z', Z'')}_{\approx R + S + \sum_{i=1}^{n} U_i} - \sum_{i=1}^{n} \underbrace{\frac{1}{2} \left(\hat{I}_{\text{NCE}}(Z_i, Z') + \hat{I}_{\text{NCE}}(Z_i, Z'') \right)}_{\approx R + U_i} - \underbrace{\mathbb{E}_{\text{mask}} \left[\hat{I}_{\text{NCE}}(Z'_{\text{mask}}, Z') + \hat{I}_{\text{NCE}}(Z''_{\text{mask}}, Z'') \right]}_{\mathcal{L}_{\text{InfMasking}}}$$

Contrastive Synergistic Information via Infinite Masking

 During the fusion process, we continuously and randomly mask a significant portion of the features from each modality an infinite number of times to capture synergistic information.

$$\begin{split} \mathcal{L}_{\text{InfMasking}} &= -\lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} \hat{I}_{\text{NCE}}(Z_{\text{mask}}^{\prime \ k}, Z^{\prime}) + \hat{I}_{\text{NCE}}(Z_{\text{mask}}^{\prime \prime \ k}, Z^{\prime\prime}) \\ &= -\mathbb{E}_{\text{mask}} \left[\hat{I}_{\text{NCE}}(Z_{\text{mask}}^{\prime}, Z^{\prime}) + \hat{I}_{\text{NCE}}(Z_{\text{mask}}^{\prime \prime}, Z^{\prime\prime}) \right]. \end{split} \qquad \textbf{computationally}$$

Lemma 3 Let $\mu_{z'_{mask}}$ and $\Sigma_{z'_{mask}}$ be the Gaussian mean vector and covariance matrix of z'_{mask} , respectively. The lower bound of $\mathbb{E}_{mask}\left[\hat{I}_{NCE}(Z'_{mask}, Z')\right]$ can be obtained as follows: $\mathbb{E}_{mask}\left[\hat{I}_{NCE}(Z'_{mask}, Z')\right]$ $\geq \mathbb{E}_{z'\sim p(Z')}\left[z'^T \mu_{z'_{mask}}/\tau - \log[\exp(z'^T \mu_{z'_{mask}}/\tau + \frac{z'^T \Sigma_{z'_{mask}} z}{2\tau^2}) + \sum_{z'_{new}} \exp(z'^T_{neg} z'_{mask}/\tau)\right]$

• Background

Method

• Experimental Results

Synthetic Experiments on Trifeature Datasets

• We conduct controlled experiments on a synthetic dataset derived from Trifeature to assess the model's capacity to learn uniqueness, redundancy and synergy.

Model	redundancy†	uniqueness†	synergy↑
Cross.	100.0	11.6	50.0
Cross+Self♣	99.7	86.9	50.0
FactorCL*	99.8	62.5	46.5
MAE	$99.8_{\pm 0.11}$	$82.4_{\pm 3.09}$	$50.1_{\pm 0.24}$
CoMM	$99.9_{\pm 0.06}$	$86.8_{\pm 2.99}$	$71.4_{\pm 3.47}$
InfMasking (ours)	$99.9_{\pm 0.09}$	90.6 $_{\pm 2.31}$	77.0 $_{\pm4.22}$

• denotes results are from "What to align in multimodal contrastive learning?"

Experiments with 2 Modalities on Multibench

• We further evaluate the performance of our model on several real-world multimodal datasets provided by Multibench.

Model	Regression	Classification				
1/20001	$V\&T EE \downarrow$	$\overline{MIMIC\uparrow}$	MOSI↑	<i>UR-FUNNY</i> ↑	$MUSTARD \uparrow$	Average* ↑
Cross [♣]	$33.09_{\pm 3.67}$	$66.7_{\pm 0.1}$	$47.8_{\pm 1.8}$	$50.1_{\pm 1.9}$	$53.5_{\pm 2.9}$	54.52
Cross+Self [♣]	$7.56_{\pm 0.31}$	$65.49_{\pm 0.0}$	$49.0_{\pm 1.1}$	$59.9_{\pm 0.9}$	$53.9_{\pm 4.0}$	57.07
FactorCL ⁴	$10.82_{\pm 0.56}$	$67.3_{\pm 0.0}$	$51.2_{\pm 1.6}$	$60.5_{\pm 0.8}$	$55.80_{\pm 0.9}$	58.7
CoMM	$7.96_{\pm 2.13}$	$66.4_{\pm 0.41}$	$63.7_{\pm 2.5}$	$63.3_{\pm 0.51}$	$64.4_{\pm 1.1}$	64.45
InfMasking (ours)	$4.23_{\pm 0.37}$	68.1 $_{\pm 0.42}$	69.0 $_{\pm 1.2}$	64.3 $_{\pm 0.9}$	66.8 $_{\pm 2.5}$	67.05

• denotes results are from "What to align in multimodal contrastive learning?"

Experiments with 3 Modalities on Multibench

• Besides the 2 modalities experiments, we further conducted experiments on the 3 modalities dataset.

Model	#Mod.	V&T CP↑	<i>UR-FUNNY</i> ↑
Cross	2	$86.3_{\pm 0.25}$	50.1 [♣]
Cross+Self	2	$87.6_{\pm 0.26}$	59.9 [♣]
CoMM	2	$85.3_{\pm 0.84}$	$63.3_{\pm 0.51}$
InfMasking (ours)	2	$88.5_{\pm 0.33}$	$64.3_{\pm 0.9}$
CMC*	3	94.1	59.2
CoMM	3	94.1 $_{\pm 0.17}$	$64.8_{\pm 1.13}$
InfMasking (ours)	3	$94.1_{\pm 0.09}$	65.6 $_{\pm 1.15}$

• denotes results are from "What to align in multimodal contrastive learning?"

Experiments with 2 Modalities on Multimodal IMDb

• Multimodal IMDb is a real-world multimodal, multi-label dataset designed for movie genre classification. It poses two major challenges: significant class imbalance with genres such as comedy and drama dominating the label distribution, and substantial semantic discrepancy between visual (poster) and textual (plot's description) modalities.

Model	Modalities	weighted- $fl\uparrow$	macro-f1†
SimCLR*	V	$40.35_{\pm 0.23}$	$27.99_{\pm 0.33}$
	V	51.5	40.8
CLIP [♣]	L	51.0	43.0
	V+L	58.9	50.9
SLIP [♣]	V+L	$56.54_{\pm 0.19}$	$47.35_{\pm0.27}$
CLIP [♣]	V+L	$54.49_{\pm 0.19}$	$44.94_{\pm0.30}$
CoMM _(CLIP backbone)	V+L	$61.29_{\pm 0.73}$	$53.79_{\pm 0.22}$
InfMasking(ours, CLIP backbone)	V+L	62.60 $_{\pm 0.26}$	$55.93_{\pm0.19}$

denotes results are from "What to align in multimodal contrastive learning?"

• Background

Method

• Experimental Results

Conclusion

We introduce a contrastive synergistic information extraction method via infinite masking.

- InfMasking stochastically occludes a substantial proportion of features from each modality during the fusion process. This masking preserves only partial information, creating fused representations with varied synergistic patterns
- Unmasked fused representations are aligned with these masked ones via mutual information maximization to encode comprehensive synergistic information.
- To address the expensive computation of mutual information estimates with infinite masking, we derive an InfMasking loss to approximate the calculation of this loss function.

THANKS