













# Diffusing DeBias: Synthetic Bias Amplification for Model Debiasing

Massimiliano Ciranni<sup>\* 1</sup>, Vito Paolo Pastore<sup>\* 1,2</sup>, Roberto Di Via<sup>\* 1</sup>, Enzo Tartaglione <sup>3</sup>, Francesca Odone <sup>1</sup>, Vittorio Murino <sup>2,4</sup>

<sup>1</sup>MaLGa-DIBRIS, University of Genoa, Italy

<sup>2</sup>Al For Good (AIGO), Istituto Italiano di Tecnologia (IIT), Genoa, Italy

<sup>3</sup>Télécom Paris, École Polytechnique, France

<sup>4</sup>Department of Computer Science, University of Verona, Italy

NeurlPS 2025

The Thirty-Ninth Annual Conference on Neural Information Processing Systems

\*Equal Contribution

San Diego (CA), USA, 12/02/2025 – 12/07/2025

# **Bias definition in Image Classification**



- Spurious correlations between class labels and samples;
- Shortcuts learned by models to minimize empirical risk;
- Present in most training samples (bias-aligned);
- Absent in a small percentage (bias-conflicting);
- A model learns these spurious correlations (instead of semantic attributes).

Problematic Bias when:

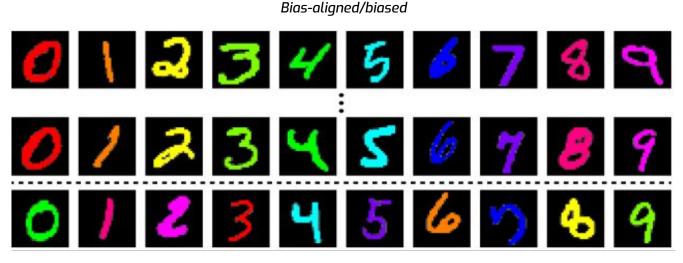
Most of the samples  $x_i$  belonging to class  $y^{(j)}$  share the same attribute  $b^{(k)}$ ,

 $\mathcal{D}_{train} = \{x_i, \ y_i \ , b_i\}_{i=1}^N$ 

i.e. 
$$|\mathcal{D}_{bias-aligned}| >> |\mathcal{D}_{bias-conflicting}|$$
 .

Training a model in this scenario often results in poor Generalization, i.e.

Train 
$$\text{Error}_{bias-conflicting} << \text{Test } \text{Error}_{bias-conflicting}$$



Bias-conflicting/unbiased







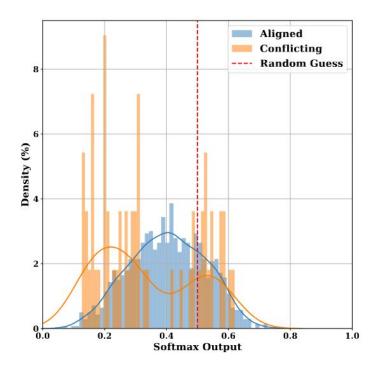




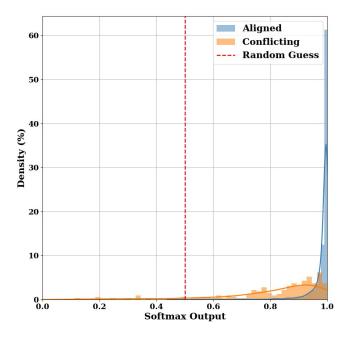








Aligned Conflicting ---- Random Guess 0.4 0.6 Softmax Output 0.2 0.8 1.0



Epoch O



Epoch 10

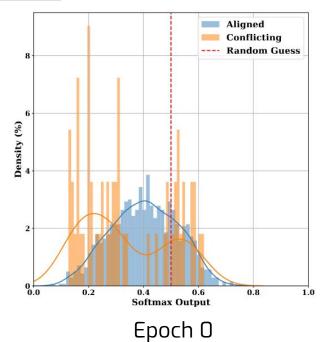


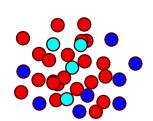


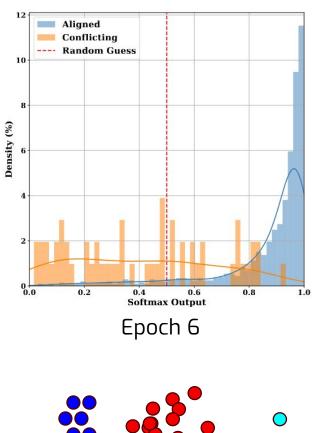


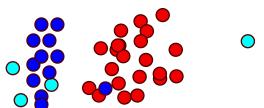




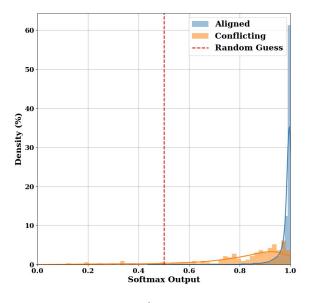




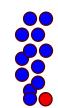


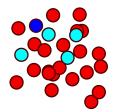














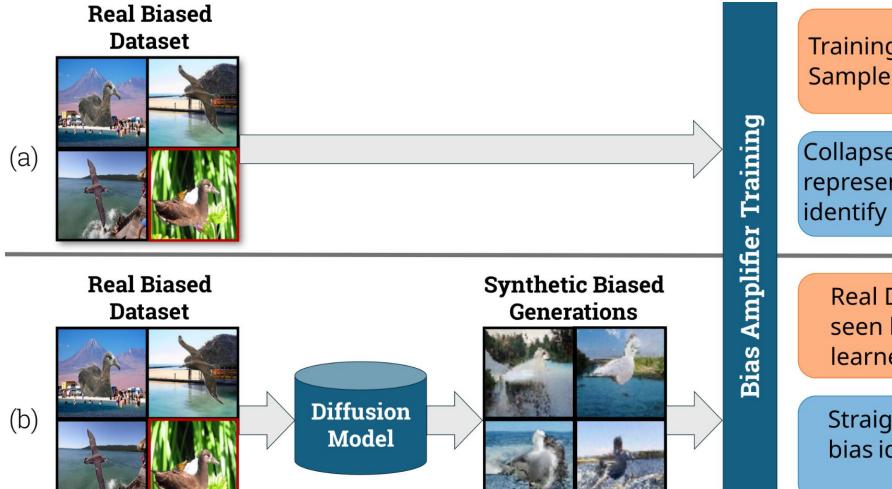












Training Conflicting
Samples Memorization

Collapse to same representation, hard to identify

Real Data is never seen but bias is still learned

Straightforward bias identification











## **Assume**



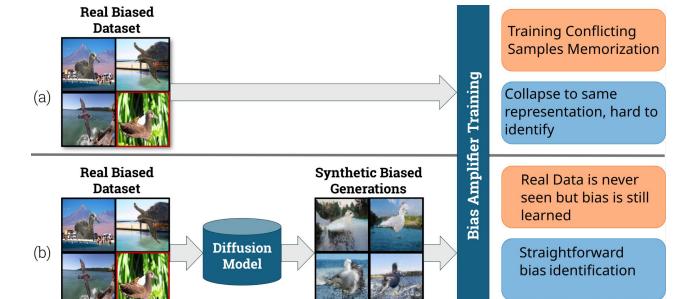


$$\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$$

$$\mathcal{D} = \mathcal{D}_{unbiased} \bigcup \mathcal{D}_{biased}$$

$$\mathcal{D}_{\text{unbiased}} \sim p_{\text{data}}$$

$$\mathcal{D}_{\text{biased}} \sim p_{\text{data}} \left( \mathbf{x}, y \mid b \right)$$













### Assume





$$\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$$

$$\mathcal{D} = \mathcal{D}_{unbiased} \bigcup \mathcal{D}_{biased}$$

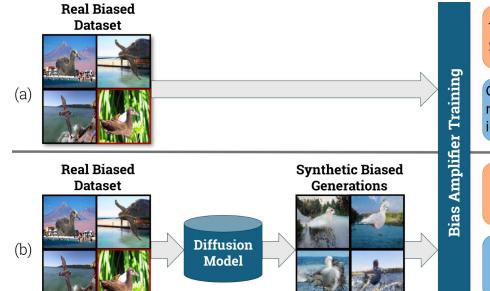
$$\mathcal{D}_{\text{unbiased}} \sim p_{\text{data}}$$

$$\mathcal{D}_{\text{biased}} \sim p_{\text{data}} \left( \mathbf{x}, y \mid b \right)$$

Our hypothesis is that a Conditional Diffusion Model can naturally approximate the biased distribution of the training set.

If 
$$|\mathcal{D}_{\text{biased}}| \gg |\mathcal{D}_{\text{unbiased}}|$$

$$\tilde{g}_{\phi}(\mathbf{x} \mid y) \approx p(\mathbf{x} \mid y)$$



**Training Conflicting** Samples Memorization

Collapse to same representation, hard to identify

> Real Data is never seen but bias is still learned

Straightforward bias identification









### Assume





$$\mathcal{D} = \mathcal{D}_{ ext{unbiased}} \bigcup \mathcal{D}_{ ext{biased}}$$

$$\mathcal{D}_{\text{unbiased}} \sim p_{\text{data}}$$

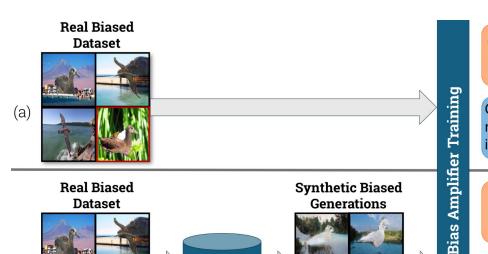
 $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ 

$$\mathcal{D}_{\text{biased}} \sim p_{\text{data}} \left( \mathbf{x}, y \mid b \right)$$

Our hypothesis is that a Conditional Diffusion Model can naturally approximate the biased distribution of the training set.

If 
$$|\mathcal{D}_{\text{biased}}| \gg |\mathcal{D}_{\text{unbiased}}|$$

$$\tilde{g}_{\phi}(\mathbf{x} \mid y) \approx p(\mathbf{x} \mid y)$$



Diffusion

Model

**Training Conflicting** Samples Memorization

Collapse to same representation, hard to identify

> Real Data is never seen but bias is still learned

Straightforward bias identification













$$\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$$

$$\mathcal{D} = \mathcal{D}_{\text{unbiased}} \bigcup \mathcal{D}_{\text{biased}}$$

$$\mathcal{D}_{\text{unbiased}} \sim p_{\text{data}}$$

$$\mathcal{D}_{\text{biased}} \sim p_{\text{data}} \left( \mathbf{x}, y \mid b \right)$$

**Real Biased Dataset** Bias Amplifier Training (a) **Real Biased Synthetic Biased** 

Diffusion

Model

**Training Conflicting** Samples Memorization

Collapse to same representation, hard to identify

Real Data is never seen but bias is still learned

Straightforward bias identification Our hypothesis is that a Conditional Diffusion Model can naturally approximate the biased distribution of the training set.

If 
$$|\mathcal{D}_{\text{biased}}| \gg |\mathcal{D}_{\text{unbiased}}|$$

$$\tilde{g}_{\phi}(\mathbf{x} \mid y) \approx p(\mathbf{x} \mid b)$$



**Dataset** 

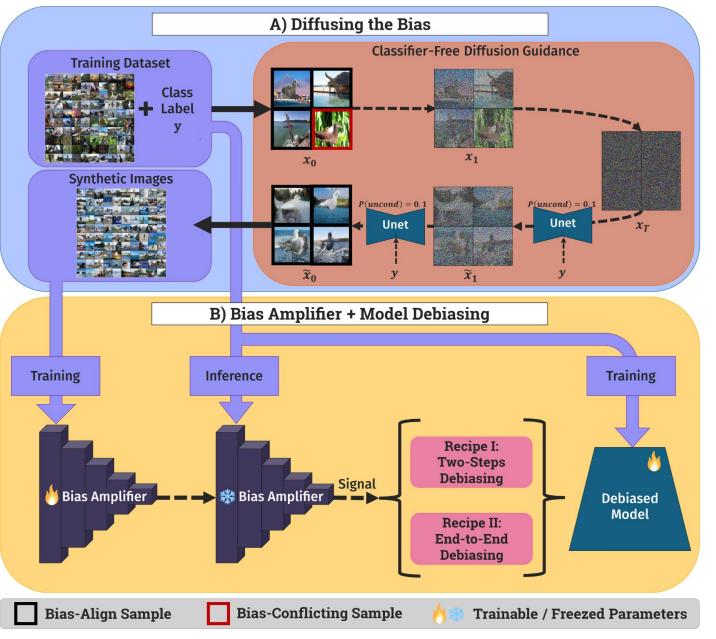




**Generations** 









First we leverage a Conditional Diffusion Model (CDPM), to create a **substitute** of the original training set with a synthetic and bias-amplified set of images.

With this new dataset, we train a **Bias-Amplifier**, which can act as a plug-in for existing debiasing methods.







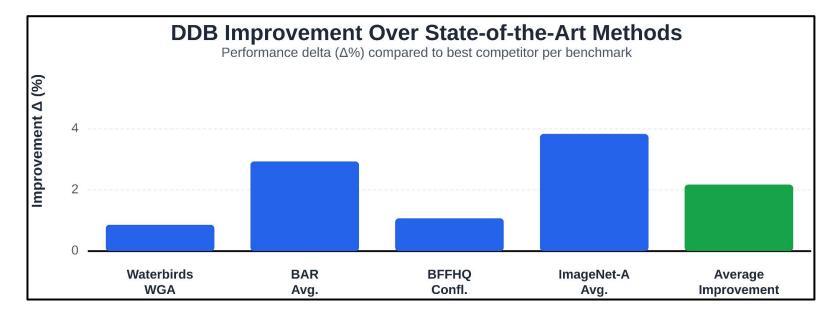












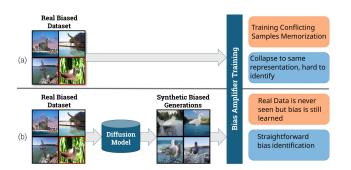
Our Bias Amplifier, regardless of the employed *recipe*, shows improvements over SOTA in all the explored benchmarks, surpassing other plug-in approaches employing our same debiasing methods.









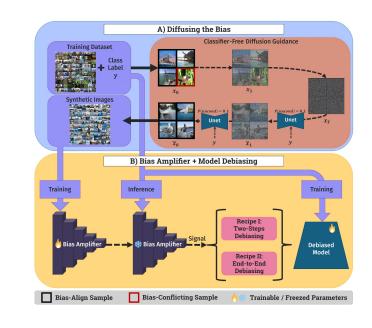


## **Conclusions and takeaways**



### In Diffusing DeBias, we show:

- · **Diffusion Models** capture **biases in the training distribution**.
- · bias-conflicting memorization issue solved by construction using aligned synthetically generated images to train a bias amplifier.
- · Our Bias Amplifier improves **Bias Identification capabilities**
- · Acting as a plug-in, provides improvements over SOTA























# Diffusing DeBias: Synthetic Bias Amplification for Model Debiasing

Massimiliano Ciranni<sup>\* 1</sup>, Vito Paolo Pastore<sup>\* 1,2</sup>, Roberto Di Via<sup>\* 1</sup>, Enzo Tartaglione <sup>3</sup>, Francesca Odone <sup>1</sup>, Vittorio Murino <sup>2,4</sup>

<sup>1</sup>MaLGa-DIBRIS, University of Genoa, Italy

\*Equal Contribution

### **GitHub Project Page**



### **ArXiv Preprint**



<sup>&</sup>lt;sup>2</sup>Al For Good (AIGO), Istituto Italiano di Tecnologia (IIT), Genoa, Italy

<sup>&</sup>lt;sup>3</sup>Télécom Paris, École Polytechnique, France

<sup>&</sup>lt;sup>4</sup>Department of Computer Science, University of Verona, Italy