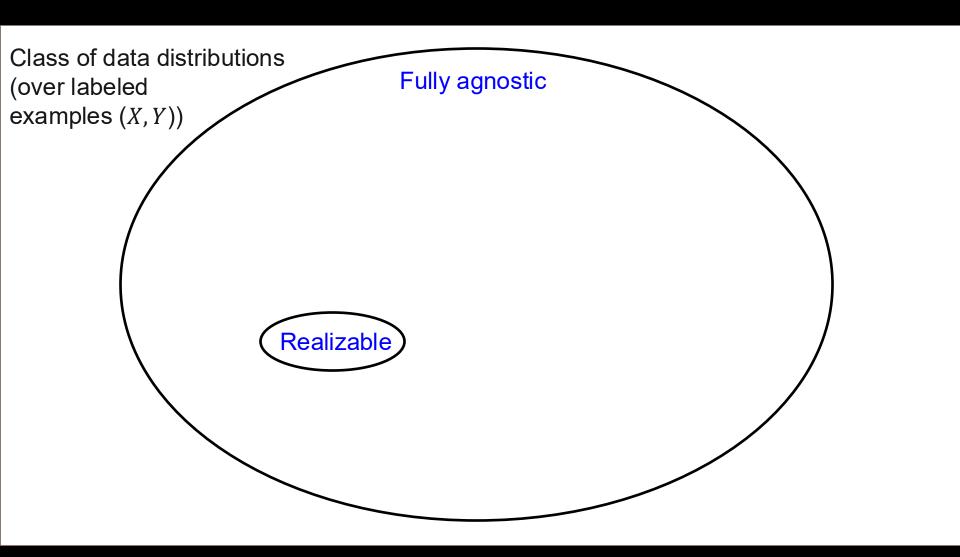
Efficient PAC Learning for Realizable-Statistic Models via Convex Surrogates

Probably Approximately Correct (PAC) Learning Model: Common Settings

- Realizable PAC learning [Valiant, 1984]
- (Fully) Agnostic PAC learning [Haussler, 1992; Kearns et al., 1994]

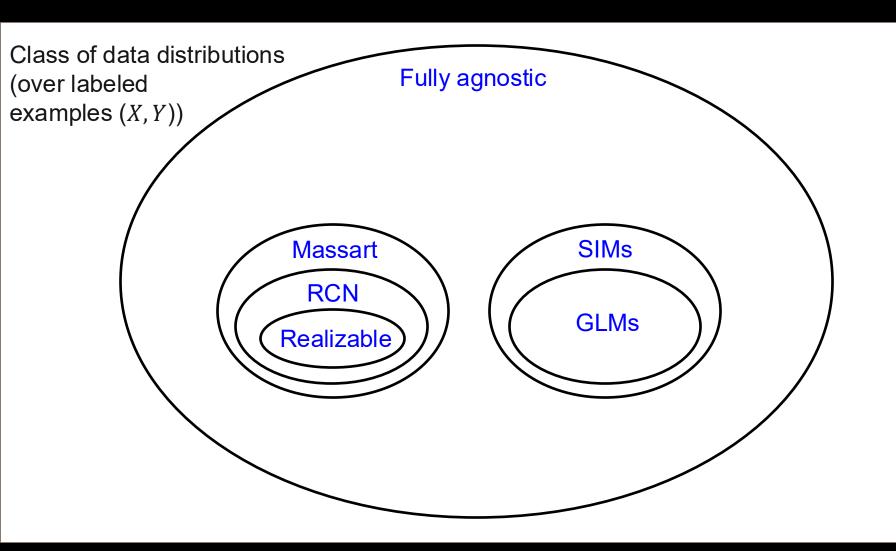
Probably Approximately Correct (PAC) Learning Model: Common Settings



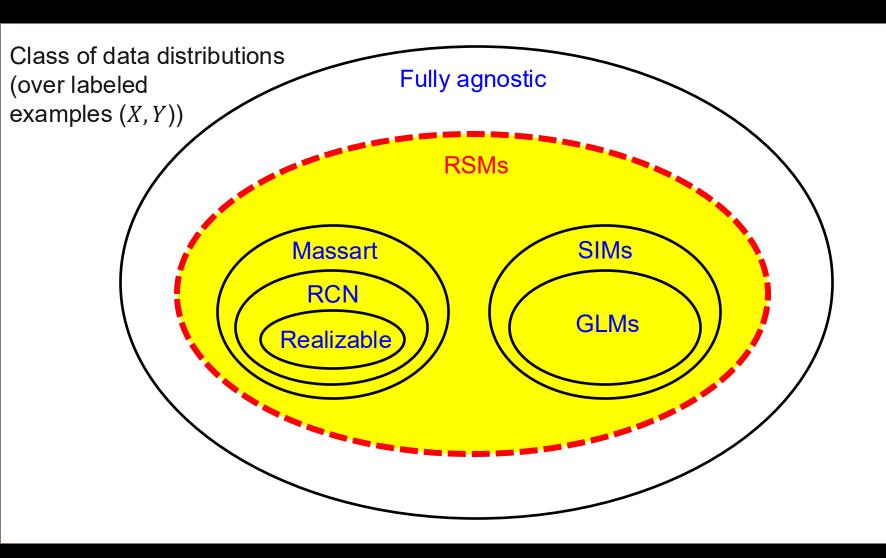
Intermediate PAC Learning Models

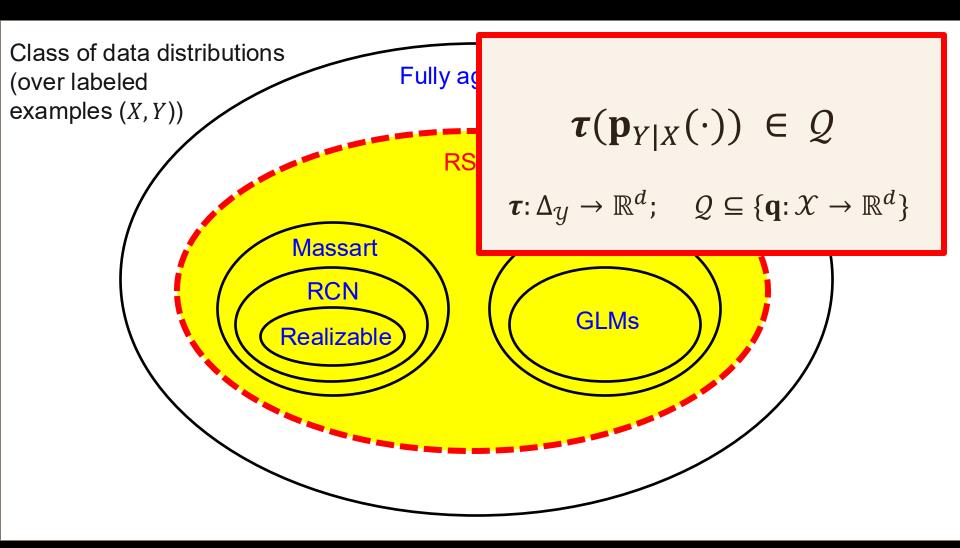
- Random classification noise (RCN) [Angluin & Laird, 1988; Bylander, 1994; Blum et al., 1998; Kearns, 1998; Long & Servedio, 2010]
- Probabilistic concepts [Kearns & Schapire, 1994]
- Massart noise [Sloan, 1988; Massart & Nédélec, 2006; Awasthi et al., 2015; 2016; Zhang et al., 2017; Diakonikolas et al., 2019; Chen et al., 2020]
- Generalized linear models (GLMs) and single index models (SIMs) [Kalai & Sastry, 2009; Kakade et al., 2011]

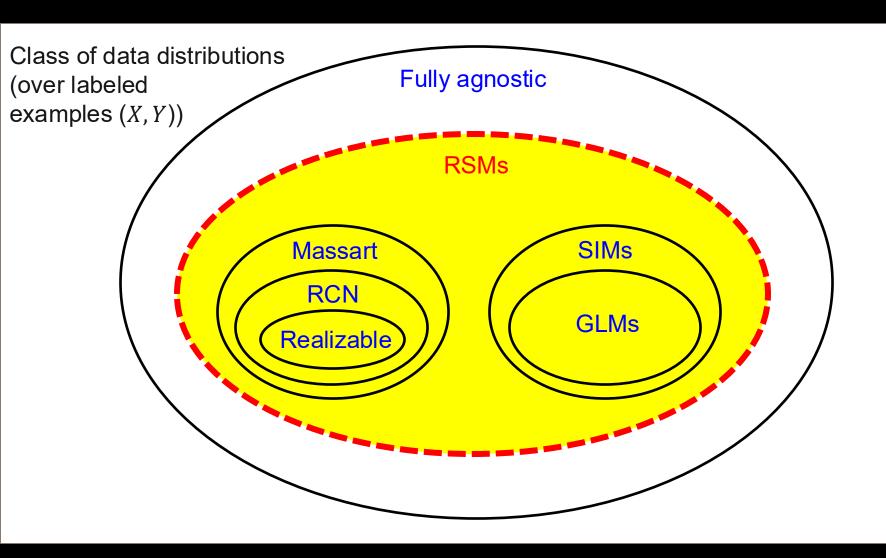
Intermediate PAC Learning Models

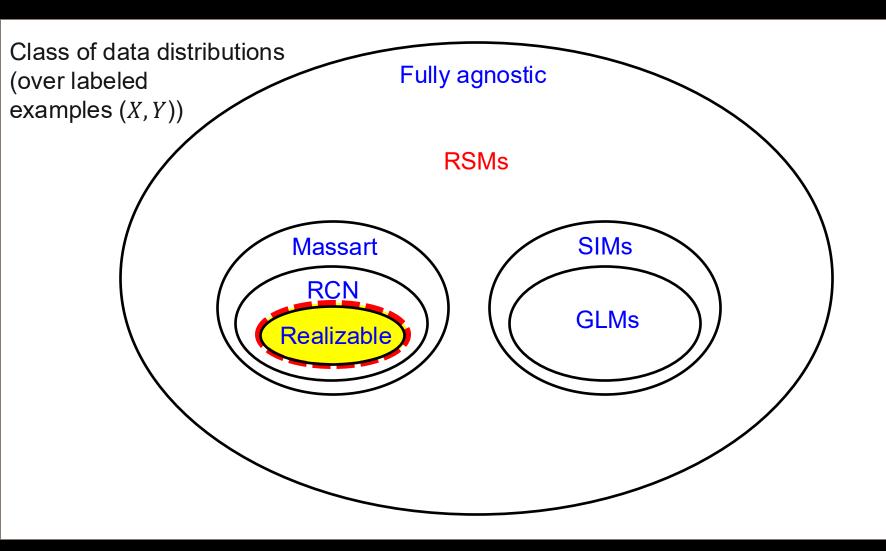


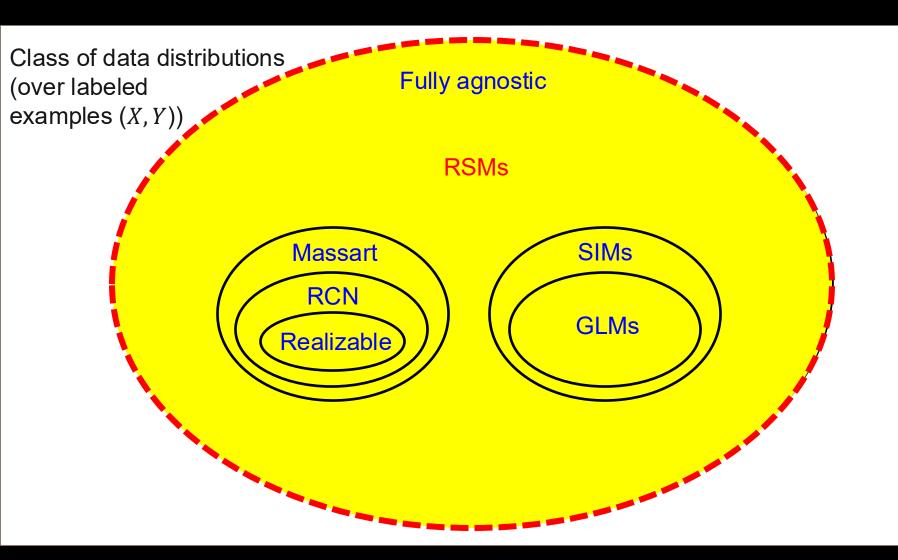
This Work: Realizable-Statistic Models (RSMs)

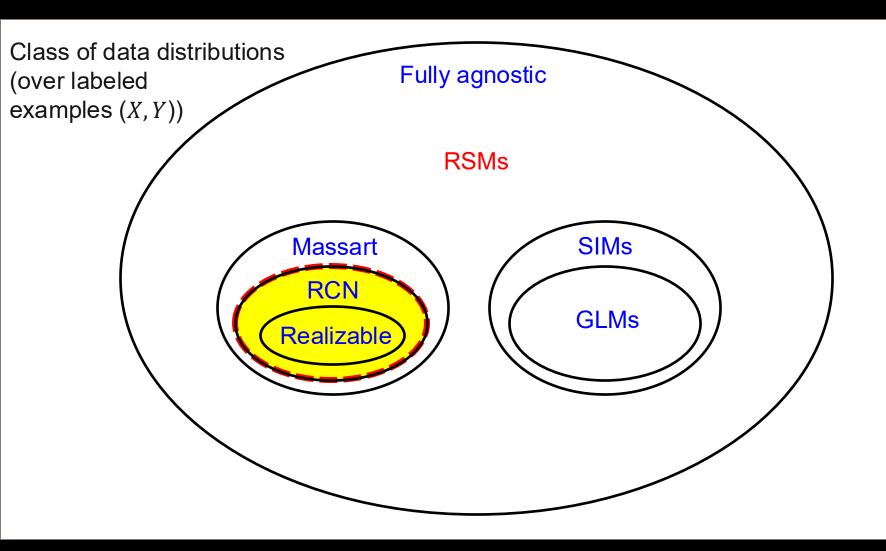


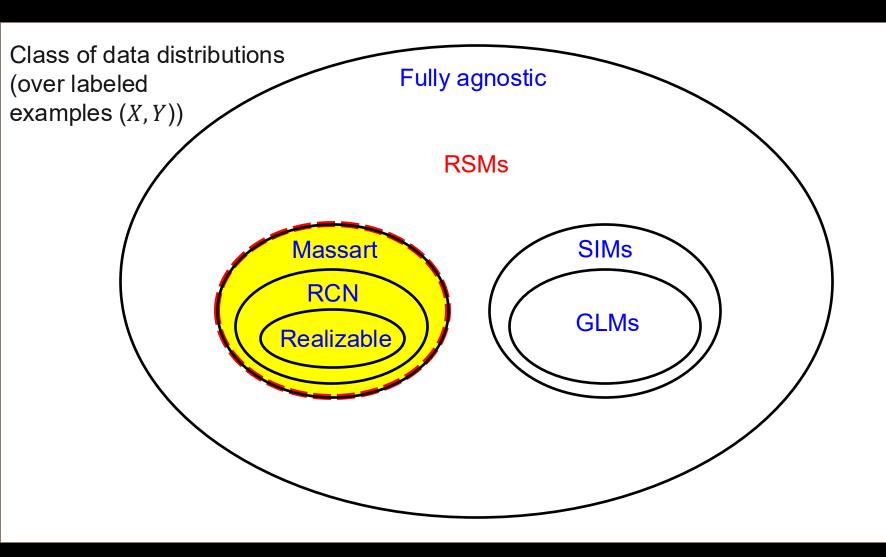


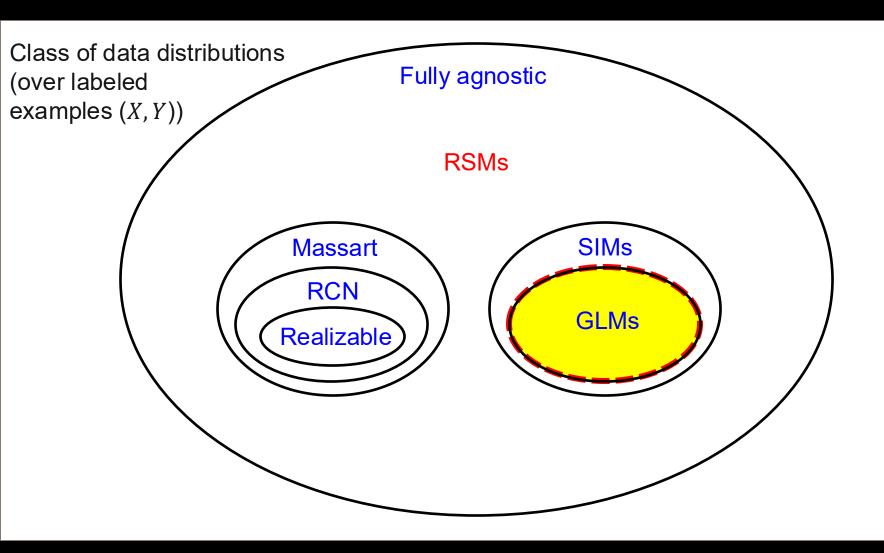


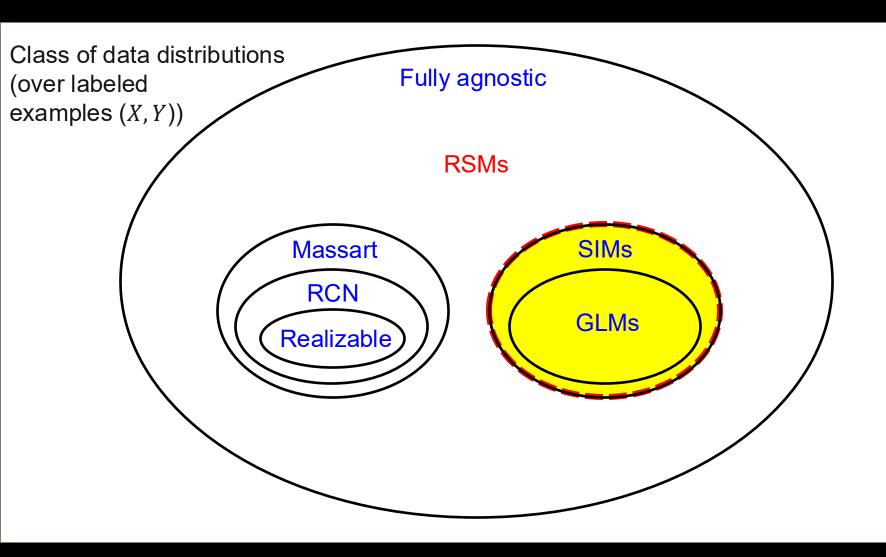


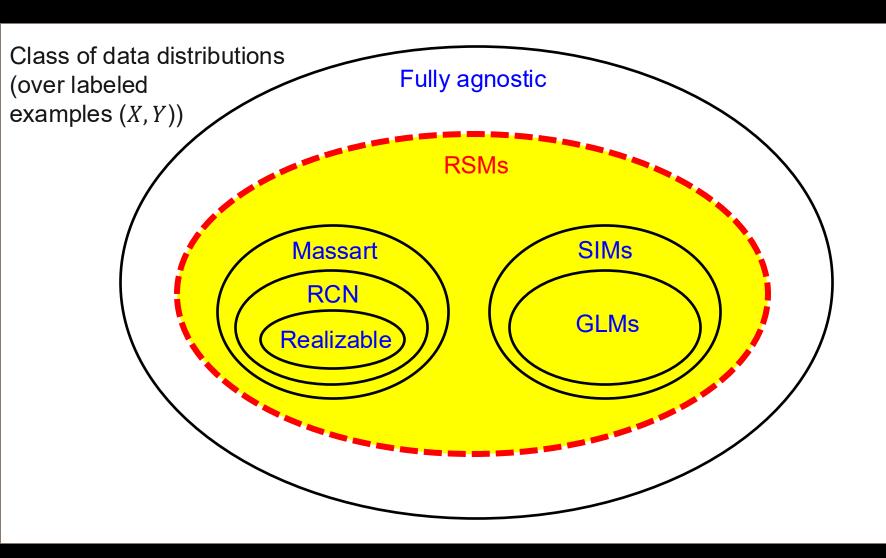












Main Results

 For many RSM learning problems, minimizing a suitable convex 'strongly proper composite' surrogate loss yields a computationally efficient learning algorithm with finite sample complexity bounds

 Applications to binary classification, multiclass classification, multi-label prediction, subset ranking

Step 1: Strongly Proper Composite Surrogate Losses

Definition 3 (Strongly proper composite surrogate losses for a statistic τ). Let $d \in \mathbb{Z}_+$ and $\mathcal{C} \subseteq \mathbb{R}^d$, and let $\tau : \Delta_{\mathcal{Y}} \to \mathcal{C}$ be any statistic of interest. Let $d' \in \mathbb{Z}_+$, and let $\mathcal{C}' \subseteq \mathbb{R}^{d'}$ be such that \mathcal{C} is in one-to-one correspondence with a subset of \mathcal{C}' . If \mathcal{C} is in one-to-one correspondence with \mathcal{C}' itself, then let $\lambda : \mathcal{C} \to \mathcal{C}'$ be an invertible mapping with inverse $\lambda^{-1} : \mathcal{C}' \to \mathcal{C}$; otherwise, let $\lambda : \mathcal{C} \to \mathcal{C}'$ be a one-to-one mapping and let $\mathcal{S} = \{\mathcal{S}_{\mathbf{q}} : \mathbf{q} \in \mathcal{C}\}$ be a partition of \mathcal{C}' such that $\lambda(\mathbf{q}) \in \mathcal{S}_{\mathbf{q}} \ \forall \mathbf{q} \in \mathcal{C}$, and let $\lambda^{-1} : \mathcal{C}' \to \mathcal{C}$ denote an 'extended' inverse that assigns $\lambda^{-1}(\mathbf{u}) = \mathbf{q} \ \forall \mathbf{u} \in \mathcal{S}_{\mathbf{q}}$. Let $\gamma > 0$. A surrogate loss $\psi : \mathcal{Y} \times \mathcal{C}' \to \mathbb{R}_+$ acting on \mathcal{C}' is γ -strongly proper composite for statistic τ with link function λ if $\mathbf{E}_{Y \sim \mathbf{p}}[\psi(Y, \mathbf{u}) - \psi(Y, \lambda(\tau(\mathbf{p})))] \geq \frac{\gamma}{2} \|\lambda^{-1}(\mathbf{u}) - \tau(\mathbf{p})\|_2^2 \ \forall \mathbf{p} \in \Delta_{\mathcal{Y}}, \ \mathbf{u} \in \mathcal{C}'$.

Step 1: Strongly Proper Composite Surrogate Losses

Definition 3 (Strongly proper composite surrogate losses for a statistic τ). Let $d \in \mathbb{Z}_+$ and

$$\mathbf{E}_{Y\sim\mathbf{p}}[\psi(Y,\mathbf{u})-\psi(Y,\boldsymbol{\lambda}(\boldsymbol{\tau}(\mathbf{p})))]$$
and surfun

$$\forall \mathbf{p} \in \Delta_{\mathcal{Y}}, \ \mathbf{u} \in \mathcal{C}'$$

Step 2: Surrogate Regret Transfer Bound for (a Broad Class of) RSMs

Theorem 1 (Surrogate regret transfer bound for RSMs that admit strongly proper composite surrogate losses). Let \mathcal{X} be any instance space and $\mathcal{Y}, \widehat{\mathcal{Y}}$ be any label and prediction spaces, respectively. Let $\mathbf{L} \in \mathbb{R}_+^{\mathcal{Y} \times \widehat{\mathcal{Y}}}$ be a loss matrix. Let $d \in \mathbb{Z}_+$ and $\mathcal{C} \subseteq \mathbb{R}^d$. Let $\boldsymbol{\tau} : \Delta_{\mathcal{Y}} \to \mathcal{C}$ and pred : $\mathcal{C} \to \widehat{\mathcal{Y}}$ be such that $(\boldsymbol{\tau}, \operatorname{pred})$ is an \mathbf{L} -calibrated statistic-mapping pair, and suppose $\exists \kappa > 0$ s.t.

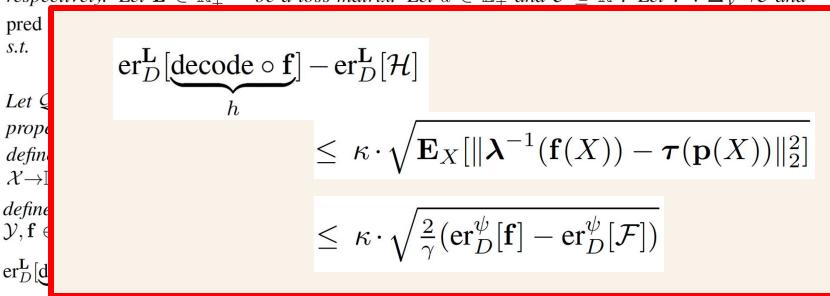
$$\mathbf{E}_{Y \sim \mathbf{p}}[L_{Y, \mathsf{pred}(\mathbf{q})}] - \min_{\widehat{y} \in \mathcal{Y}} \mathbf{E}_{Y \sim \mathbf{p}}[L_{Y, \widehat{y}}] \leq \kappa \|\mathbf{q} - \boldsymbol{\tau}(\mathbf{p})\|_2 \quad \forall \mathbf{p} \in \Delta_{\mathcal{Y}}, \mathbf{q} \in \mathcal{C}.$$

Let $Q \subseteq \{\mathbf{q}: \mathcal{X} \rightarrow \mathcal{C}\}\$ be a class of 'statistic' functions, and let $\psi: \mathcal{Y} \times \mathbb{R}^d \rightarrow \mathbb{R}_+$ be a γ -strongly proper composite surrogate loss for $\boldsymbol{\tau}$ with link function $\boldsymbol{\lambda}: \mathcal{C} \rightarrow \mathbb{R}^d$. Let $\mathcal{H} \subseteq \{h: \mathcal{X} \rightarrow \widehat{\mathcal{Y}}\}\$ be defined as $\mathcal{H}:=\operatorname{pred}\circ Q=\{h: \mathcal{X} \rightarrow \widehat{\mathcal{Y}}\mid \exists \mathbf{q}\in \mathcal{Q} \text{ s.t. } h(x)=\operatorname{pred}(\mathbf{q}(x))\ \forall x\in \mathcal{X}\}, \text{ let }\mathcal{F}\subseteq \{f: \mathcal{X} \rightarrow \mathbb{R}^d\}\$ be defined as $\mathcal{F}:=\boldsymbol{\lambda}\circ \mathcal{Q}=\{\mathbf{f}: \mathcal{X} \rightarrow \mathbb{R}^d\mid \exists \mathbf{q}\in \mathcal{Q} \text{ s.t. } \mathbf{f}(x)=\boldsymbol{\lambda}(\mathbf{q}(x))\ \forall x\in \mathcal{X}\}, \text{ and define decode}: <math>\mathbb{R}^d \rightarrow \widehat{\mathcal{Y}}$ as decode := $\operatorname{pred}\circ \boldsymbol{\lambda}^{-1}$. Suppose that $\psi(y,\mathbf{f}(x))\in [0,B]\ \forall x\in \mathcal{X},y\in \mathcal{Y},\mathbf{f}\in \mathcal{F}$ for some B>0. Then for any $\mathbf{f}\in \mathcal{F}$ and any $D\in \mathcal{D}_{(\boldsymbol{\tau},\mathcal{Q})\text{-RSM}}$,

$$\operatorname{er}_{D}^{\mathbf{L}}[\underbrace{\operatorname{decode} \circ \mathbf{f}}_{L}] - \operatorname{er}_{D}^{\mathbf{L}}[\mathcal{H}] \leq \kappa \cdot \sqrt{\mathbf{E}_{X}[\|\boldsymbol{\lambda}^{-1}(\mathbf{f}(X)) - \boldsymbol{\tau}(\mathbf{p}(X))\|_{2}^{2}]} \leq \kappa \cdot \sqrt{\frac{2}{\gamma}(\operatorname{er}_{D}^{\psi}[\mathbf{f}] - \operatorname{er}_{D}^{\psi}[\mathcal{F}])}.$$

Step 2: Surrogate Regret Transfer Bound for (a Broad Class of) RSMs

Theorem 1 (Surrogate regret transfer bound for RSMs that admit strongly proper composite surrogate losses). Let \mathcal{X} be any instance space and $\mathcal{Y}, \widehat{\mathcal{Y}}$ be any label and prediction spaces, respectively. Let $\mathbf{L} \in \mathbb{R}_{+}^{\mathcal{Y} \times \widehat{\mathcal{Y}}}$ be a loss matrix. Let $d \in \mathbb{Z}_{+}$ and $\mathcal{C} \subseteq \mathbb{R}^{d}$. Let $\boldsymbol{\tau} : \Delta_{\mathcal{Y}} \rightarrow \mathcal{C}$ and



Theorem 2 (RSM learning bounds for surrogate risk minimizers via d_1 covering numbers). Under the conditions of Theorem 1, suppose the surrogate loss ψ is ρ_1 -Lipschitz in the second argument with respect to the L^1 metric, so that $\psi(y, \mathbf{u}_1) - \psi(y, \mathbf{u}_2) \leq \rho_1 \|\mathbf{u}_1 - \mathbf{u}_2\|_1 \ \forall y, \mathbf{u}_1, \mathbf{u}_2$, and suppose that the function classes $\mathcal{F}^j = \{f_i : \mathcal{X} \to \mathbb{R} \mid \exists \mathbf{f} \in \mathcal{F} \text{ s.t. } f_i(x) = (\mathbf{f}(x))_i \ \forall x \}, j \in [d]$ each have bounded d_1 covering numbers $\mathcal{N}_1(\epsilon, \mathcal{F}^j, m)$ (polynomial in m and $1/\epsilon$). Then a surrogate risk minimization algorithm A which, given a training sample S of size m, finds an $(16B/\sqrt{m})$ approximate minimizer $\hat{\mathbf{f}}_S \in \mathcal{F}$ of the empirical surrogate risk $\frac{1}{m} \sum_{i=1}^m \psi(y_i, \mathbf{f}(x_i))$ over \mathcal{F} , and produces a τ -statistic estimate $\widehat{\mathbf{q}}_S(x) = \boldsymbol{\lambda}^{-1}(\widehat{\mathbf{f}}_S(x))$ and a prediction model $\widehat{h}_S \in \mathcal{H}$ given by $\widehat{h}_S(x) = \operatorname{decode}(\widehat{\mathbf{f}}_S(x))$ (or equivalently, $\widehat{h}_S(x) = \operatorname{pred}(\widehat{\mathbf{q}}_S(x))$), is a PAC learning algorithm for the RSM learning problem $(\mathbf{L}, \mathcal{H}, \mathcal{D}_{(\tau,Q)\text{-RSM}})$ with squared τ -estimation error sample complexity $m_{\mathcal{A}}^{\tau}(\epsilon,\delta) \leq \min \left\{ m_0 \in \mathbb{Z}_+ : m \geq m_0 \implies m \geq \frac{1152B^2}{\gamma^2 \epsilon^2} \left(\sum_{j=1}^d \ln \left(\mathcal{N}_1 \left(\frac{\gamma \epsilon}{48\rho_1 d}, \mathcal{F}^j, 2m \right) \right) + \right) \right\}$ $\ln\left(\frac{4}{\delta}\right)$, and with target loss sample complexity $m_{\mathcal{A}}^{\mathbf{L}}(\epsilon,\delta) \leq \min\left\{m \in \mathbb{Z}_{+} : m \geq m_{0} \implies m \geq m_{0}\right\}$ $\frac{1152\kappa^4 B^2}{\gamma^2 \epsilon^4} \left(\sum_{j=1}^d \ln \left(\mathcal{N}_1 \left(\frac{\gamma \epsilon^2}{48\kappa^2 a_1 d}, \mathcal{F}^j, 2m \right) \right) + \ln \left(\frac{4}{\delta} \right) \right) \right\}$. In particular, if the d_1 covering numbers of the function classes \mathcal{F}^j have upper bounds of the form $\mathcal{N}_1(\epsilon, \mathcal{F}^j, m) \leq \phi(\epsilon, \mathcal{F}^j)$ (i.e., bounds independent of sample size m), then $m_{\mathcal{A}}^{\tau}(\epsilon, \delta) \leq \frac{1152B^2}{\gamma^2 \epsilon^2} \left(\sum_{j=1}^d \ln \left(\phi\left(\frac{\gamma \epsilon}{48\rho_1 d}, \mathcal{F}^j\right) \right) + \ln \left(\frac{4}{\delta}\right) \right)$, and $m_{\mathcal{A}}^{\mathbf{L}}(\epsilon,\delta) \leq \frac{1152\kappa^4 B^2}{\gamma^2 \epsilon^4} \left(\sum_{j=1}^d \ln \left(\phi\left(\frac{\gamma \epsilon^2}{48\kappa^2 \alpha_j d}, \mathcal{F}^j\right) \right) + \ln\left(\frac{4}{\delta}\right) \right).$

Theorem 2 (RSM learning bounds for surrogate risk minimizers via d_1 covering numbers). Under the conditions of Theorem I, suppose the surrogate loss ψ is ρ_1 -Lipschitz in the second argument with respect to the L^1 metric, so that $\psi(y, \mathbf{u}_1) - \psi(y, \mathbf{u}_2) \leq \rho_1 \|\mathbf{u}_1 - \mathbf{u}_2\|_1 \ \forall y, \mathbf{u}_1, \mathbf{u}_2,$ and suppose that the function classes $\mathcal{F}^j = \{f_j : \mathcal{X} \rightarrow \mathbb{R} \mid \exists \mathbf{f} \in \mathcal{F} \text{ s.t. } f_j(x) = (\mathbf{f}(x))_j \ \forall x\}, j \in [d]$

For
$$\mathcal{N}_1(\epsilon, \mathcal{F}^j, m) \leq \phi(\epsilon, \mathcal{F}^j)$$
:

$$m_{\mathcal{A}}^{\tau}(\epsilon, \delta) \leq \frac{1152B^2}{\gamma^2 \epsilon^2} \left(\sum_{j=1}^d \ln \left(\phi\left(\frac{\gamma \epsilon}{48\rho_1 d}, \mathcal{F}^j\right) \right) + \ln \left(\frac{4}{\delta}\right) \right)$$

$$m_{\mathcal{A}}^{\mathbf{L}}(\epsilon, \delta) \leq \frac{1152\kappa^4 B^2}{\gamma^2 \epsilon^4} \left(\sum_{j=1}^d \ln \left(\phi \left(\frac{\gamma \epsilon^2}{48\kappa^2 \rho_1 d}, \mathcal{F}^j \right) \right) + \ln \left(\frac{4}{\delta} \right) \right)$$

$$m_{\mathcal{A}}^{\mathbf{L}}(\epsilon, \delta) \leq \frac{1152\kappa^4 B^2}{\gamma^2 \epsilon^4} \left(\sum_{j=1}^d \ln \left(\phi \left(\frac{\gamma \epsilon^2}{48\kappa^2 \rho_1 d}, \mathcal{F}^j \right) \right) + \ln \left(\frac{4}{\delta} \right) \right).$$

Theorem 3 (RSM learning bounds for surrogate risk minimizers via Rademacher complexities). Under the conditions of Theorem 1, suppose the surrogate loss ψ is ρ_2 -Lipschitz in the second argument with respect to the Euclidean metric, so that $\psi(y, \mathbf{u}_1) - \psi(y, \mathbf{u}_2) \leq \rho_2 \|\mathbf{u}_1 - \mathbf{u}_2\|_2 \ \forall y, \mathbf{u}_1, \mathbf{u}_2,$ and suppose that the function classes $\mathcal{F}^j = \{f_i : \mathcal{X} \to \mathbb{R} \mid \exists \mathbf{f} \in \mathcal{F} \text{ s.t. } f_i(x) = (\mathbf{f}(x))_i \ \forall x \},$ $j \in [d]$ each have non-negative, decreasing Rademacher complexities $\mathcal{R}_m(\mathcal{F}^j)$ (decreasing in m). Then a surrogate risk minimization algorithm A which, given a training sample S of size m, finds an $(B/(2\sqrt{m}))$ -approximate minimizer $\mathbf{f}_S \in \mathcal{F}$ of the empirical surrogate risk $\frac{1}{m}\sum_{i=1}^m \psi(y_i, \mathbf{f}(x_i))$ over \mathcal{F} , and produces a $\boldsymbol{\tau}$ -statistic estimate $\widehat{\mathbf{q}}_S(x) = \boldsymbol{\lambda}^{-1}(\widehat{\mathbf{f}}_S(x))$ and a prediction model $\widehat{h}_S \in \mathcal{H}$ given by $\widehat{h}_S(x) = \operatorname{decode}(\widehat{\mathbf{f}}_S(x))$ (or equivalently, $\widehat{h}_S(x) = \widehat{\mathbf{f}}_S(x)$ $pred(\widehat{\mathbf{q}}_S(x))$), is a PAC learning algorithm for the RSM learning problem $(\mathbf{L}, \mathcal{H}, \mathcal{D}_{(\tau, \mathcal{Q})\text{-RSM}})$ with squared τ -estimation error sample complexity $m_{\mathcal{A}}^{\tau}(\epsilon,\delta) \leq \min\{m_0 \in \mathbb{Z}_+ : m \geq 1\}$ $m_0 \implies 3\left(2\sqrt{2}\rho_2 \cdot \sum_{j=1}^d \mathcal{R}_m(\mathcal{F}^j) + B\sqrt{\frac{\ln(2/\delta)}{m}}\right) \leq \frac{\gamma\epsilon}{2}$, and with target loss sample complexity $m_{\mathcal{A}}^{\mathbf{L}}(\epsilon,\delta) \leq \min \left\{ m \in \mathbb{Z}_{+} : m \geq m_{0} \implies 3\left(2\sqrt{2}\rho_{2} \cdot \sum_{j=1}^{d} \mathcal{R}_{m}(\mathcal{F}^{j}) + B\sqrt{\frac{\ln(2/\delta)}{m}}\right) \leq \frac{\gamma\epsilon^{2}}{2\kappa^{2}} \right\}.$ In particular, if $\exists C > 0$ such that the Rademacher complexities of the function classes \mathcal{F}^j have upper bounds of the form $\mathcal{R}_m(\mathcal{F}^j) \leq C/\sqrt{m} \ \forall j \in [d]$, then $m_{\mathcal{A}}^{\boldsymbol{\tau}}(\epsilon, \delta) \leq \frac{36}{\gamma^2 \epsilon^2} \left(2\sqrt{2}\rho_2 C d + B\sqrt{\ln(2/\delta)}\right)^2$, and $m_{\mathcal{A}}^{\mathbf{L}}(\epsilon,\delta) \leq \frac{36\kappa^4}{\gamma^2\epsilon^4} \left(2\sqrt{2}\rho_2 Cd + B\sqrt{\ln(2/\delta)}\right)^2$.

Theorem 3 (RSM learning bounds for surrogate risk minimizers via Rademacher complexities).

Under the conditions of Theorem 1, suppose the surrogate loss ψ is ρ_2 -Lipschitz in the second argument with respect to the Euclidean metric, so that $\psi(y, \mathbf{u}_1) - \psi(y, \mathbf{u}_2) \leq \rho_2 \|\mathbf{u}_1 - \mathbf{u}_2\|_2 \ \forall y, \mathbf{u}_1, \mathbf{u}_2,$ and suppose that the function classes $F^j = \{f, \dots, \mathcal{X} \to \mathbb{R} \mid \exists \mathbf{f} \in F \text{ s.t. } f_*(x) = (\mathbf{f}(x)), \forall x\}$

For
$$\mathcal{R}_m(\mathcal{F}^j) \leq C/\sqrt{m}$$
:

$$m_{\mathcal{A}}^{\tau}(\epsilon, \delta) \leq \frac{36}{\gamma^2 \epsilon^2} \left(2\sqrt{2}\rho_2 C d + B\sqrt{\ln(2/\delta)}\right)^2$$

$$m_{\mathcal{A}}^{\mathbf{L}}(\epsilon, \delta) \leq \frac{36\kappa^4}{\gamma^2 \epsilon^4} \left(2\sqrt{2}\rho_2 C d + B\sqrt{\ln(2/\delta)}\right)^2.$$

bounds of the form $\mathcal{R}_m(\mathcal{F}^j) \leq C/\sqrt{m} \ \forall j \in [d]$, then $m_{\mathcal{A}}^{\boldsymbol{\tau}}(\epsilon, \delta) \leq \frac{36}{\gamma^2 \epsilon^2} \left(2\sqrt{2}\rho_2 C d + B\sqrt{\ln(2/\delta)}\right)^2$, and $m_{\mathcal{A}}^{\mathbf{L}}(\epsilon, \delta) \leq \frac{36\kappa^4}{\gamma^2 \epsilon^4} \left(2\sqrt{2}\rho_2 C d + B\sqrt{\ln(2/\delta)}\right)^2$.

Applications

Binary classification (0-1 loss)

Multiclass classification (0-1 loss)

Multi-label prediction (Hamming loss)

Subset ranking (DCG metric)

Applications

Assumption on conditional label distribution $\mathbf{P}(Y X=x)$	Learning target	Sample complexity (for squared estimation error $\leq \epsilon$)	Sample complexity (for target loss based regret $\leq \epsilon$)	Computational complexity $(m = \text{sample complexity from column 3 or 4})$		
Binary classification with 0-1 loss $[\mathcal{X}\subseteq\mathbb{R}^p,\mathcal{Y}=\widehat{\mathcal{Y}}=\{\pm 1\}]$						
Noisy LTF: RCN [10, 17, 21]	Best LTF		$\operatorname{poly}(p, 1/\epsilon)$	$\operatorname{poly}(p, 1/\epsilon)$		
Noisy LTF: Massart noise [15]	Upper bound η on Massart noise		$\widetilde{O}(\operatorname{poly}(p)/\epsilon^3)$	$\operatorname{poly}(p, 1/\epsilon)$		
GLM [25] (Kakade et al., 2011)	Best LTF	$\widetilde{O}(1/\epsilon^2)$		$\widetilde{O}(m^{3/2}p)$		
SIM [25]	Best LTF	$(i) O(p/\epsilon^3)$ $(ii) \widetilde{O}(1/\epsilon^4)$		$(i) \widetilde{O}(m^{4/3}p)$ $(ii) \widetilde{O}(m^{5/4}p)$		
Sigmoid-of-linear [as special case of RSMs]	Best LTF	$\widetilde{O}(1/\epsilon^2)$	$\widetilde{O}(1/\epsilon^4)$	$\widetilde{O}(m^{5/4}p)$		
Multiclass classification with	Multiclass classification with 0-1 loss (n classes) $[\mathcal{X} \subseteq \mathbb{R}^p, \mathcal{Y} = \mathcal{Y} = [n]]$					
Softmax-of-multilinear [as special case of RSMs]	Best multilinear multiclass classifier	$(i) \widetilde{O}(np/\epsilon^2) (ii) \widetilde{O}(n^2/\epsilon^2)$	$(i) \widetilde{O}(np/\epsilon^4) (ii) \widetilde{O}(n^2/\epsilon^4)$	$(i) \widetilde{O}(m^{5/4}np) (ii) \widetilde{O}(m^{5/4}np)$		
Multi-label prediction with Hamming loss (s tags) [$\mathcal{X} \subseteq \mathbb{R}^p$, $\mathcal{Y} = \widehat{\mathcal{Y}} = \{0,1\}^s$]						
Sigmoid-of-linear marginals [as special case of RSMs]	Best multilinear multi- label prediction model	$\widetilde{O}(s^3/\epsilon^2)$	$\widetilde{O}(s^5/\epsilon^4)$	$\widetilde{O}(m^{5/4}sp)$		
Subset ranking with DCG metric (s items, r rating levels) $[\mathcal{X} \subseteq \mathbb{R}^p, \mathcal{Y} = \{0, 1, \dots, r\}^s, \widehat{\mathcal{Y}} = \Pi_s]$						
Sigmoid-of-linear scaled marginal expectations [as special case of RSMs]	Best multilinear subset ranking model		$\widetilde{O}(r^4s^5/\epsilon^4)$			

Applications

	Assumption on conditional label distribution $\mathbf{P}(Y X=x)$	Learning target	Sample complexity (for squared estimation error $\leq \epsilon$)	Sample complexity (for target loss based regret $\leq \epsilon$)	Computational complexity $(m = \text{sample complexity from column 3 or 4})$			
	Binary classification with 0-1 loss $[\mathcal{X}\subseteq\mathbb{R}^p,\mathcal{Y}=\widehat{\mathcal{Y}}=\{\pm 1\}]$							
	Noisy LTF: RCN [10, 17, 21]	Best LTF		$\operatorname{poly}(p, 1/\epsilon)$	$\operatorname{poly}(p, 1/\epsilon)$			
	Noisy LTF: Massart noise [15]	Upper bound η on Massart noise		$\widetilde{O}(\operatorname{poly}(p)/\epsilon^3)$	$\operatorname{poly}(p, 1/\epsilon)$			
	GLM [25] (Kakade et al., 2011)	Best LTF	$\widetilde{O}(1/\epsilon^2)$		$\widetilde{O}(m^{3/2}p)$			
	SIM [25]	Best LTF	$\begin{array}{c} (i) \ \widetilde{O}(p/\epsilon^3) \\ (ii) \ \widetilde{O}(1/\epsilon^4) \end{array}$		$(i) \widetilde{O}(m^{4/3}p)$ $(ii) \widetilde{O}(m^{5/4}p)$			
	Sigmoid-of-linear [as special case of RSMs]	Best LTF	$\widetilde{O}(1/\epsilon^2)$	$\widetilde{O}(1/\epsilon^4)$	$\widetilde{O}(m^{5/4}p)$			
	Multiclass classification with	Iulticlass classification with 0-1 loss (n classes) $[\mathcal{X} \subseteq \mathbb{R}^p, \mathcal{Y} = \widehat{\mathcal{Y}} = [n]]$						
	Softmax-of-multilinear [as special case of RSMs]	Best multilinear multiclass classifier	(i) $\widetilde{O}(np/\epsilon^2)$ (ii) $\widetilde{O}(n^2/\epsilon^2)$	$(i) \widetilde{O}(np/\epsilon^4) \ (ii) \widetilde{O}(n^2/\epsilon^4)$	$\begin{array}{c} (i) \widetilde{O}(m^{5/4}np) \\ (ii) \widetilde{O}(m^{5/4}np) \end{array}$			
9	Multi-label prediction with Hamming loss (s tags) $[\mathcal{X} \subseteq \mathbb{R}^p, \mathcal{Y} = \widehat{\mathcal{Y}} = \{0,1\}^s]$							
	Sigmoid-of-linear marginals [as special case of RSMs]	Best multilinear multi- label prediction model	$\widetilde{O}(s^3/\epsilon^2)$		$\widetilde{O}(m^{5/4}sp)$			
	Subset ranking with DCG metric (s items, r rating levels) $[\mathcal{X} \subseteq \mathbb{R}^p, \mathcal{Y} = \{0, 1, \dots, r\}^s, \widehat{\mathcal{Y}} = \Pi_s]$ Sigmoid-of-linear scaled Best multilinear $\widetilde{O}(s^3/\epsilon^2)$ $\widetilde{O}(r^4s^5/\epsilon^4)$ $\widetilde{O}(m^{5/4}sp)$							
	Sigmoid-of-linear scaled marginal expectations [as special case of RSMs]	Best multilinear subset ranking model	$\widetilde{O}(s^3/\epsilon^2)$	$\widetilde{O}(r^4s^5/\epsilon^4)$	$\widetilde{O}(m^{5/4}sp)$			

