

Shape-Informed Clustering of Multi-Dimensional Functional Data via Deep Functional Autoencoders

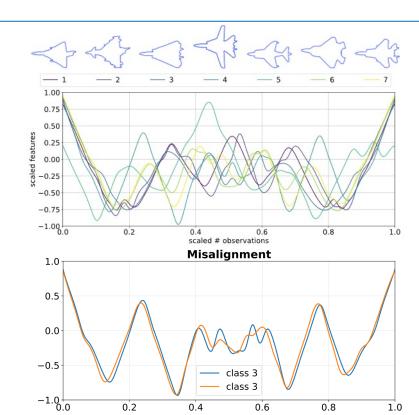
Samuel V. Singh¹, Shirley Coyle², Mimi Zhang¹

¹School of Computer Science and Statistics, Trinity College Dublin

²School of Electronic Engineering, Dublin City University

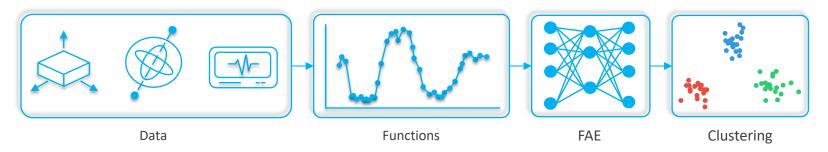
Introduction

Motivation and background

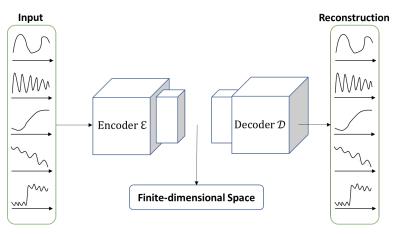

What are Functional Data (FD)?

Why is clustering FD challenging?

fPCA or pairwise (dis)similarity measure + clustering algorithm


Key problems: high-dimensional, nonlinear, or misaligned in phase

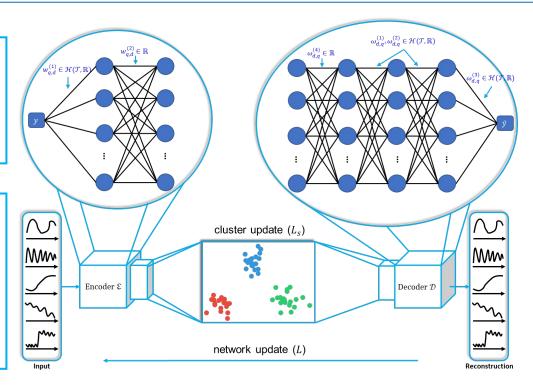
Motivation: deep learning to model nonlinear relationships and incorporated shape-informed clustering


Introducing FAEclust

Functional AutoEncoder for Clustering

FAEclust

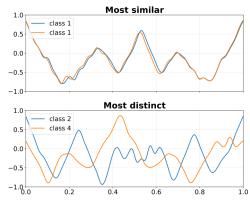
- encoder and decoder are both universal approximators
- joint clustering scheme
- shape-informed clustering, robust to phase variation

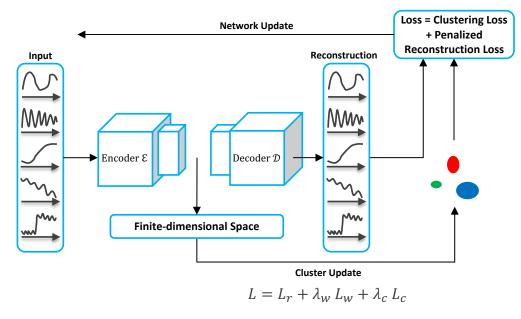

FAEclust Architecture

Encoder-Decoder

Encoder
$$E:\ \mathcal{H}(\mathcal{T},\mathbb{R}^p)\to\mathbb{R}^s$$

$$\mathbf{x}^{(1)} = a \left(\int_{\mathcal{T}} \mathbf{W}^{(1)}(t) \mathbf{y}(t) dt + \mathbf{b} \right)$$
$$\mathbf{x} = \text{MLP}(\mathbf{x}^{(1)})$$


$$\begin{aligned} \mathbf{Decoder} \, \mathcal{D} : \, \mathbb{R}^{\mathrm{S}} &\rightarrow \mathcal{H}(\mathcal{T}, \mathbb{R}^{\mathrm{p}}) \\ \widehat{\boldsymbol{x}}^{(1)} &= \mathrm{MLP}(\boldsymbol{x}) \\ \widehat{\boldsymbol{y}}^{(1)}(t) &= a \left(\boldsymbol{\mathcal{W}}^{(1)}(t) \widehat{\boldsymbol{x}}^{(1)} + \boldsymbol{b}_{1}(t) \right) \\ \widehat{\boldsymbol{y}}^{(2)}(t) &= a \left(\boldsymbol{\mathcal{W}}^{(2)}(t) \widehat{\boldsymbol{y}}^{(1)}(t) + \boldsymbol{b}_{2}(t) \right) \\ \widehat{\boldsymbol{y}}(t) &= \boldsymbol{\mathcal{W}}^{(3)}(t) \widehat{\boldsymbol{y}}^{(2)}(t) \end{aligned}$$



Joint Training & Shape-Informed Clustering

Network training: Forward Phase and Backward Phase

- **1. Forward (cluster update):** via convex clustering, where the similarity measure depends on the elastic distance.
- **2.** Backward (network update): minimize an integrated objective function L.

Experimental Setup (Data & Baselines)

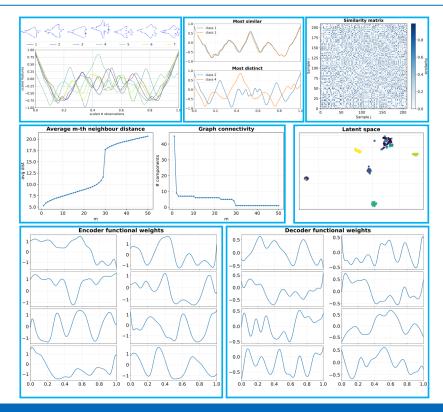
Euclidean and Manifold-Valued FD Datasets

Baseline methods: FNN (Functional Neural Net), FAE (Functional AutoEncoder), VANO (Variational Autoencoding Neural Operator), funHDDC, funclust, FADPclust(FADP1/FADP2).

Euclidean FD: 17 UEA/UCR datasets

Manifold-valued FD: hypersphere, hyperbolic space, and Swiss-roll manifold, plus trajectories from the Lorenz attractor and a pendulum

Evaluation metrics: Adjusted Mutual Information (AMI), values near 1.0 indicate perfect clustering.


Datasets	$\operatorname{funHDDC}$	funclust	FADP1	FADP2	FNN	FAE	VANO	FAEclust
BirdChicken	0.055	0.080	0.019	0.055	0.290	0.259	0.302	0.339
CBF	0.362	0.066	0.435	0.318	0.363	0.370	0.743	0.724
Chinatown	0.147	0.147	0.246	0.055	0.236	0.110	0.339	0.343
DSR	0.786	0.017	0.692	0.876	0.679	0.645	0.713	0.887
ECG200	0.173	0.101	0.201	0.143	0.214	0.213	0.217	0.261
Fungi	0.773	0.186	0.477	0.501	0.244	0.624	0.798	0.925
Plane	0.819	0.013	0.725	0.741	0.841	0.825	0.846	0.907
Rock	0.373	0.228	0.216	0.335	0.184	0.089	0.355	0.447
Symbols	0.767	0.001	0.435	0.712	0.748	0.800	0.817	0.824
Blink	0.410	0.048	0.189	0.177	0.453	0.506	0.522	0.633
$_{\mathrm{BM}}$	0.377	0.031	0.191	0.422	0.401	0.676	0.592	0.539
EOS	0.209	0.018	0.104	0.102	0.152	0.206	0.180	0.266
Epilepsy	0.143	0.028	0.077	0.225	0.274	0.209	0.297	$\boldsymbol{0.485}$
ERing	0.735	0.012	0.288	0.714	0.643	0.743	0.733	0.664
FM	0.001	0.001	0.002	0.002	0.174	0.138	0.174	0.228
JV	0.840	0.069	0.294	0.466	0.236	0.854	0.899	0.893
SWJ	0.268	0.040	0.248	0.046	0.174	0.170	0.344	0.324
Hypersphere	0.016	0.478	0.137	0.067	0.089	0.307	0.443	0.737
Hyperbolic	0.005	0.013	0.001	0.001	0.004	0.047	0.410	0.798
Swiss roll	0.127	0.114	0.382	0.189	0.016	0.125	0.242	0.432
Lorenz	0.109	0.389	0.092	0.144	0.023	0.246	0.251	0.457
Pendulum	0.887	0.376	0.797	0.808	0.253	0.794	0.905	0.986

Results and Conclusion

Contributions & Takeaways

- Framework that unifies deep functional representation learning with clustering
- Shape-informed clustering objective
- Universal approximation and stability
- Empirical evidence through
 - Euclidean
 - Manifold
- Time warped scenarios

Limitation: slightly higher runtime

Thank You

Scan to access full paper and code:

