‘ %
aris NEURAL INFORMATION

bt li #OYPROCESSING SYSTEMS
0 [ ]

of
9, IP PARIS AMPERE

Self-Supervised Learning of Graph Representations for
Network Intrusion Detection

Lorenzo Guerra, Thomas Chapuis, Guillaume Duc, Pavlo Mozharovskyi, Van-Tam Nguyen



TELECOM
Paris

Why is Intrusion Detection So Hard?

EEEEEE

- Supervised Models are a Dead End: They require constant, expensive relabeling and are blind to zero-day
attacks by design.

« Self-Supervised Learning is the Only Path Forward: It learns the network's normal behavior from
massive, unlabeled data, but this requires highly expressive models.
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The Problem with Existing Self-Supervised Models
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Our Solution: GraphiIDS

EEEEEE

1. Unified End-to-End Framework: Jointly trains a GNN and Transformer, forcing the GNN to
learn embeddings directly optimized for anomaly detection.

2. Local and Global Context: E-GraphSAGE captures local topological patterns, while the

Transformer's self-attention learns global co-occurrence patterns across the entire network.

3. Simple & Effective Detection: Anomaly score is simply the reconstruction error. No

complex detectors or negative sampling needed
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Precision

Precision

Key Results
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Figure 1. Precision-recall curves for all models on each dataset.
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Figure 2. Anomaly score by attack type in NF-UNSW-NB15-v3.
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Figure 3. Anomaly score by attack type in NF-CSE-CIC-IDS2018-v3.
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Conclusion & Takeaways

EEEEEE

« Introduced GraphlDS: The first self-supervised framework to jointly train a GNN and a Transformer-based
autoencoder for network intrusion detection.

- Unified Representation: The model learns by reconstructing graph-based flow embeddings, effectively
unifying local topological context (from the GNN) with global co-occurrence patterns (from the Transformer).

- State-of-the-Art Performance: Achieves up to 99.98% PR-AUC, outperforming baselines by 5-25
percentage points, all without relying on labeled attack data or prior attack knowledge for training.




