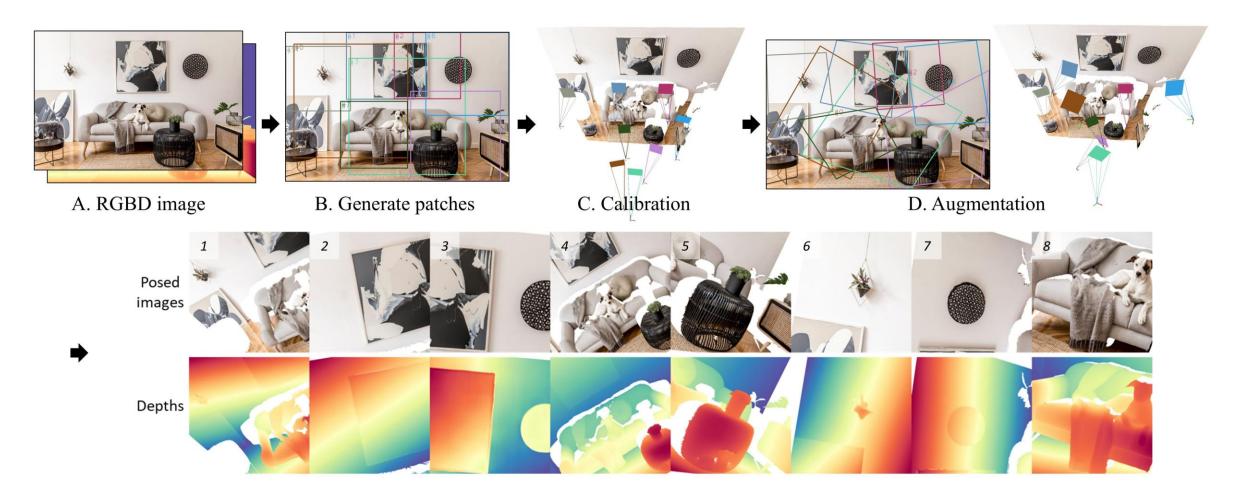


Puzzles: Unbounded Video-Depth Augmentation for Scalable End-to-End 3D Reconstruction

NeurIPS 2025

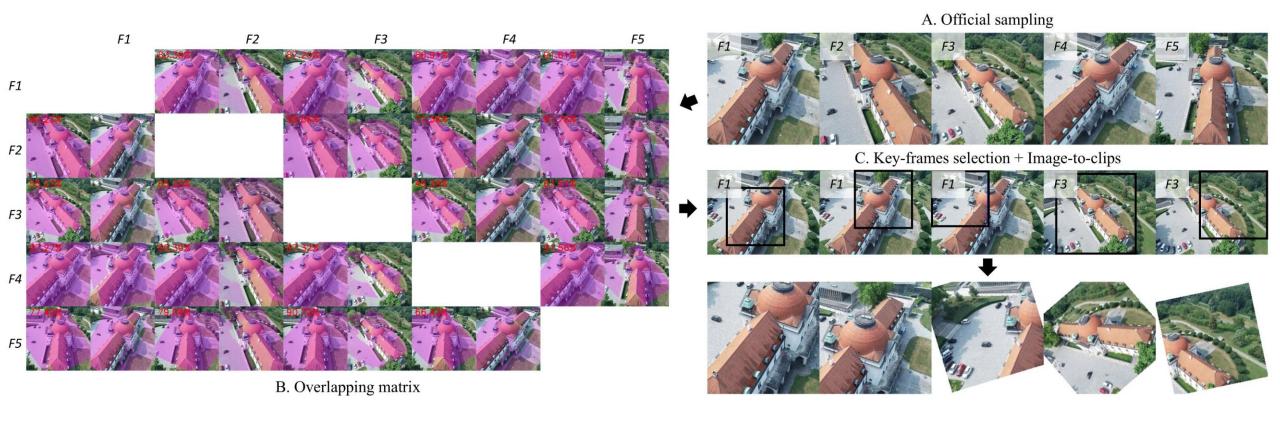
Jiahao Ma^{1,3}, Lei Wang², Miaomiao Liu¹, David Ahmedt-Aristizabal³, Chuong Nguyen³
Australian National University¹, Griffith University², CSIRO DATA61³

Quick Preview - Research problem & Motivation



- Task: Feedforward 3D reconstruction: given unposed, uncalibrated images, predicts global point maps.
- Challenge: Existing methods need massive posed video; limited diversity/scale hurts robustness/generalization.
- Solution (Puzzles): Plug-and-play augmentation that makes ordered, overlapping, video-like sub-clips from images/clips, boosting diversity without changing the model.

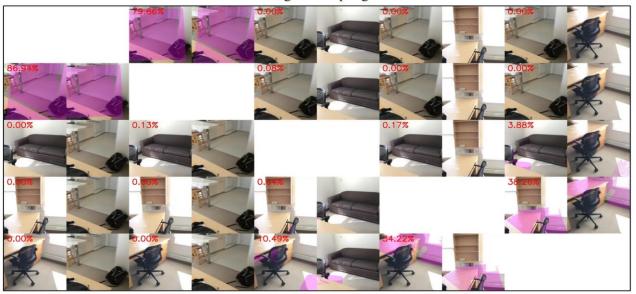
Quick Preview


Puzzles: Unbounded Video-Depth Augmentation for Scalable End-to-End 3D Reconstruction

Method – Image-to-Clips

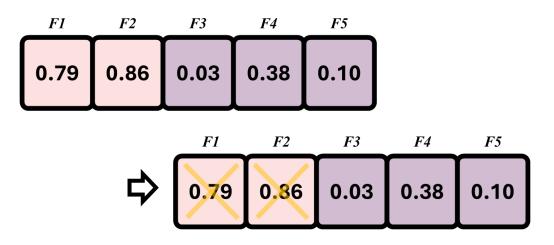
Puzzles: Image-to-Clips. (A) Starting from a single RGB-D image, we (B) partition it into ordered, overlapping patches, (C) simulate diverse viewpoints by calibrating virtual camera poses, and (D) generate augmented, posed images with aligned depth maps for use in 3D reconstruction.

Method - Clips-to-Clips

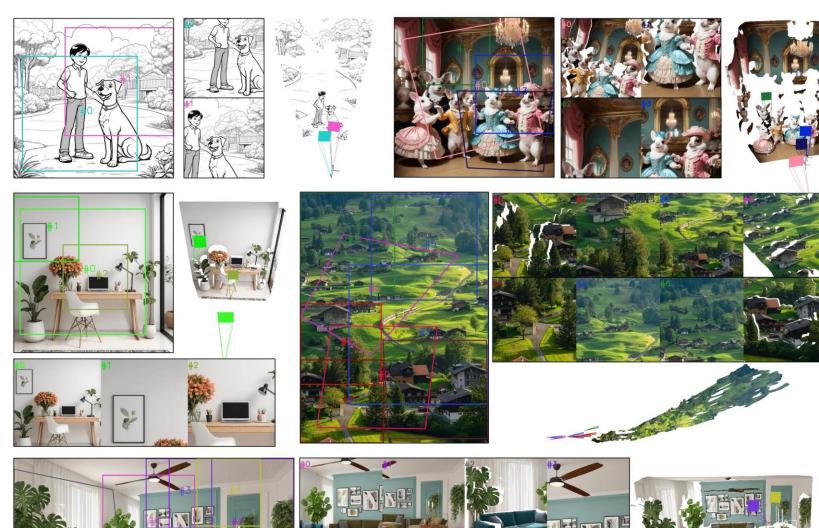


Puzzles: Clips- to- Clips. (A) We begin by uniformly sampling frames from a video. (B) A pair-wise overlap matrix is computed to measure frame redundancy, with overlap visualized in purple and overlap ratios annotated in red. (C) Low-redundancy keyframes are then selected, and diverse sub-clips are synthesized from them using the Image-to-Clips method.

Method - Clips-to-Clips Example


Original sampling

Overlapping matrix



Keyframes selection

- **A. Valid frames selection** # Keep frames whose max overlap with any other frame \geq threshold $\eta \rightarrow$ candidates: F1–F5.
- **B. Retain the longest set** # From valid frames, choose the largest mutually-overlapping group \rightarrow pick F3–F5.
- *C. Prune redundancy* # Remove frames highly redundant (overlap $\geq \rho = 0.01$) \rightarrow final keys: F3–F5.

Examples – Image-to-Clips

Examples – Image-to-Clips

Examples – Clips-to-Clips

Results

Method	w/ Puzzles	Data	7Scenes				NRGBD				DTU			
			Acc↓		Comp↓		Acc↓		Comp↓		Acc↓		Comp↓	
			Value	∆ (%)	Value	△(%)	Value	△(%)	Value	△(%)	Value	△(%)	Value	△ (%)
Spann3R [9]	*	full 1/10 full	$0.0388 \\ 0.0389 \\ 0.0330$	-0.26 +14.94	0.0253 0.0248 0.0224	+1.98 +11.46	0.0686 0.0753 0.0644	-9.79 +6.00	$\begin{array}{c} 0.0315 \\ 0.0341 \\ 0.0291 \end{array}$	-8.50 +7.51		+20.18 +19.90		+19.47 +19.66
Fast3R [11]	*	full 1/10 full	0.0412 0.0402 0.0342	+2.30 +16.99	0.0275 0.0272 0.0239	+1.09 +13.09	0.0735 0.0772 0.0684	-5.11 +6.94	0.0287 0.0295 0.0259		4.2961 3.7174 3.5912			+8.41 +15.96
SLAM3R [10]	*	full 1/10 full	0.0291 0.0289 0.0264	+0.68 +9.27	0.0245 0.0237 0.0218	+3.26 +11.02	0.0481 0.0493 0.0439		0.0292 0.0313 0.0263		4.3820 3.5980 3.6497	+17.89 +16.71		+15.60 +16.12

Quantitative comparison on 7Scenes, NRGBD and DTU. Value & relative improvement (Δ) after using **Puzzles**.

Visual Comparison

Puzzles: Unbounded Video-Depth Augmentation for Scalable End-to-End 3D Reconstruction

Project page: https://jiahao-ma.github.io/puzzles/