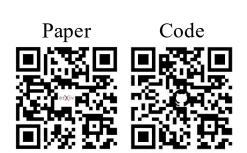


Perturb a Model, Not an Image: Towards Robust Privacy Protection via Anti-Personalized Diffusion Models

Tae-Young Lee^{1*} Juwon Seo^{2*} Jong Hwan Ko^{3†} Gyeong-Moon Park^{1†}

¹Korea University ²Kyung Hee University ³Sungkyunkwan University



Presented by **Tae-Young Lee**

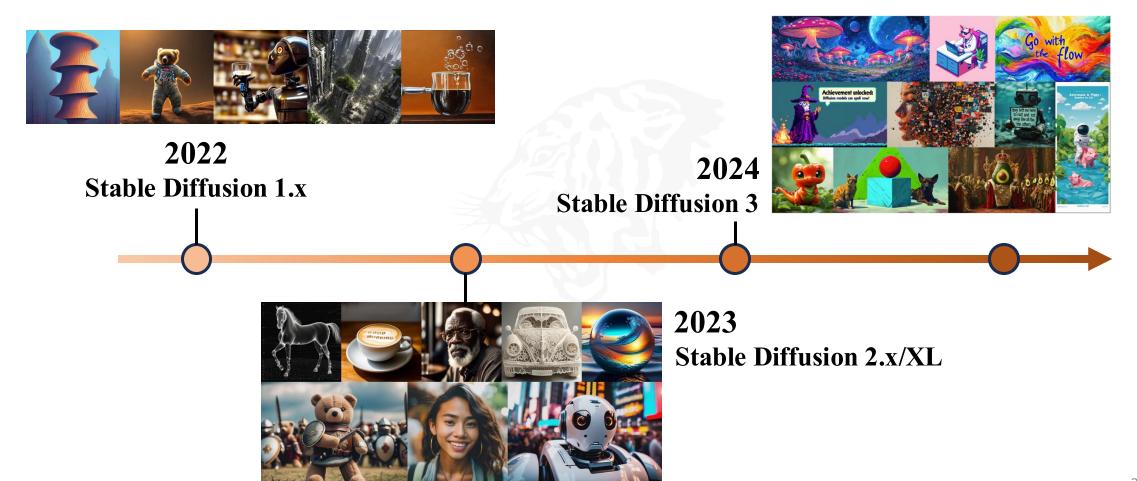
01

Introduction

Motivation for our work

Text-to-Image Generation

- Recently, **Text-to-Image generation** has become a major research direction in generative Al.
 - Diffusion-based T2I models have rapidly evolved, achieving higher realism and controllability.



Rise of Personalization

• In such a trend, **personalization methods** have emerged.

Input images

A [V] dog in the Versailles hall of mirrors gardens of Versailles

A [V] dog in Coachella

A [V] dog in mountain Fuji

A [V] dog with Eiffel Tower in the background

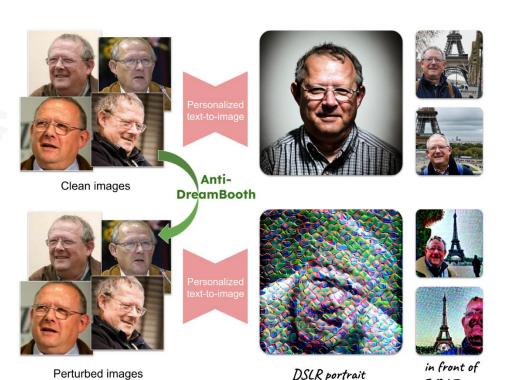
DreamBooth [1]

Custom Diffusion [2]

- [1] Ruiz, Nataniel, et al. "Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation." CVPR 2023.
- [2] Kumari, Nupur, et al. "Multi-concept customization of text-to-image diffusion." CVPR 2023.

Privacy Concern of Personalization

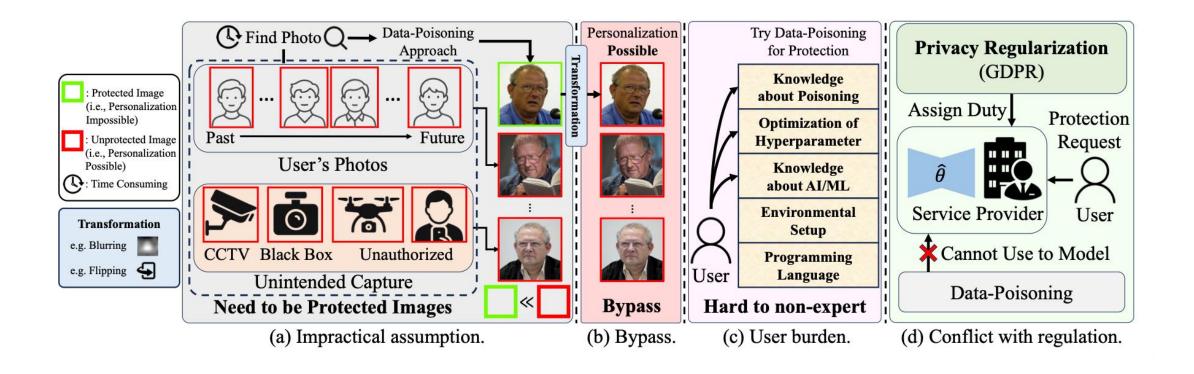
- Despite their success, personalization methods also raise some privacy concerns.
 - Unauthorized content generation
 - Identity or likeness misuse (e.g., Deepfake)
 - Copyright infringement
- To counter these issues, researchers have aimed to prevent unauthorized personalization.
 - Based on the adversarial attack, they add some perturbation to the given images.
 - Attackers cannot personalize with these protected images.



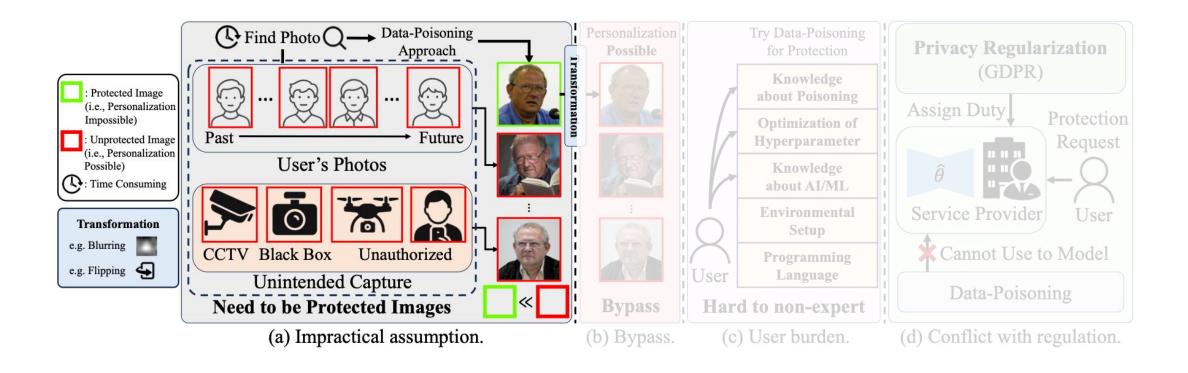
Anti-DreamBooth [3]

Eiffel Tower

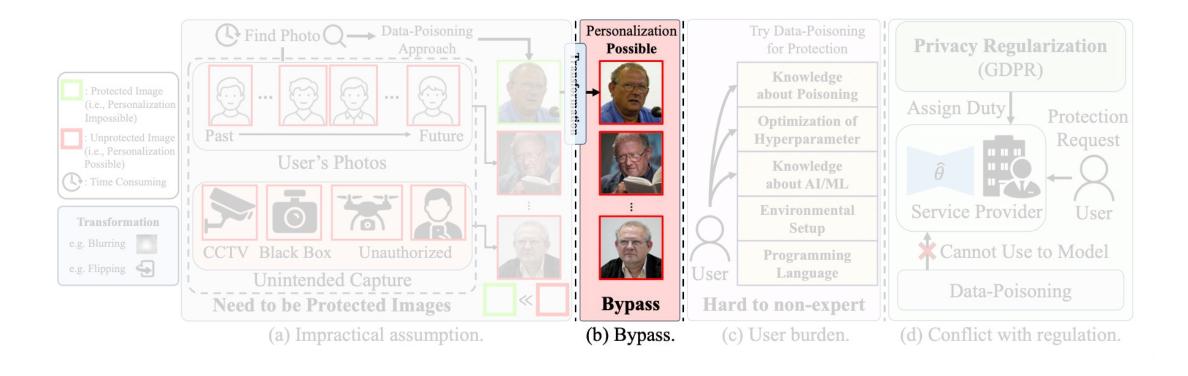
- However, existing protection methods only focused on data-level protection.
 - Data-level protection modifies user data, but fails to prevent personalization at the model level.



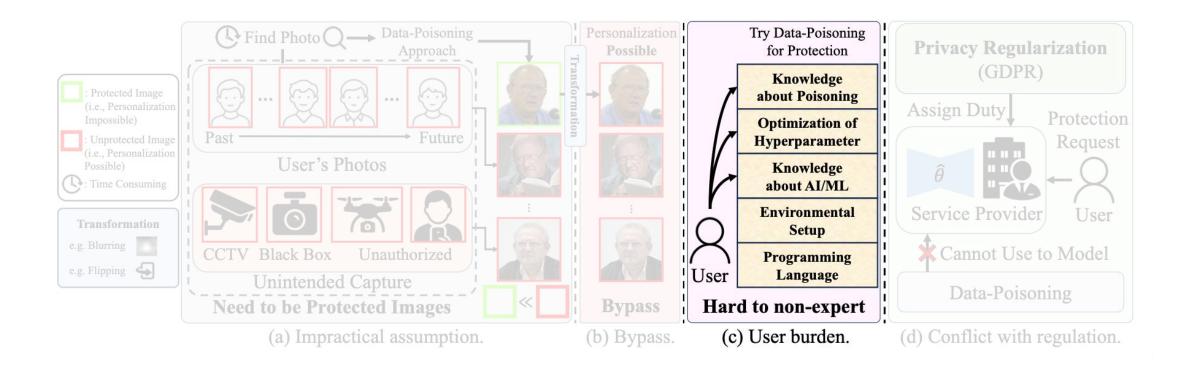
- Impractical assumption.
 - Cannot manage all images that contain the target subject.



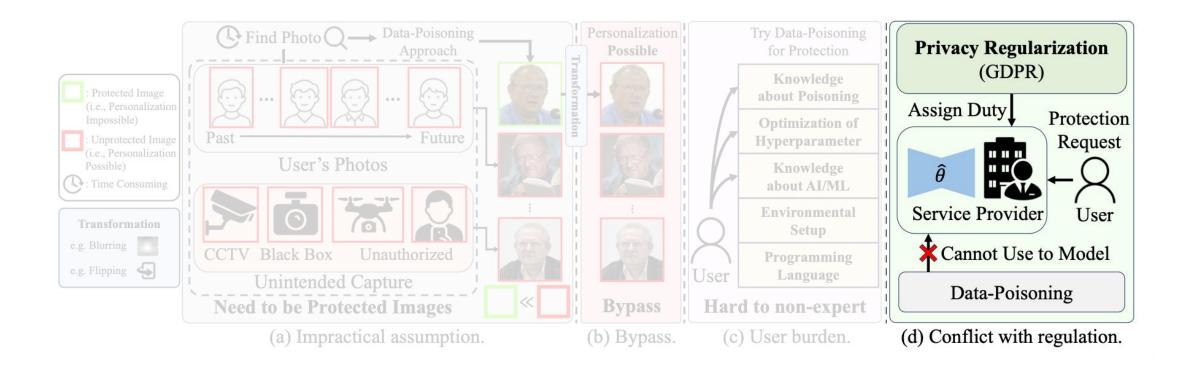
- Bypass.
 - Easily bypassed by daily transformations (e.g., blurring, flipping).



- User burden.
 - Hard to apply for non-expert users.

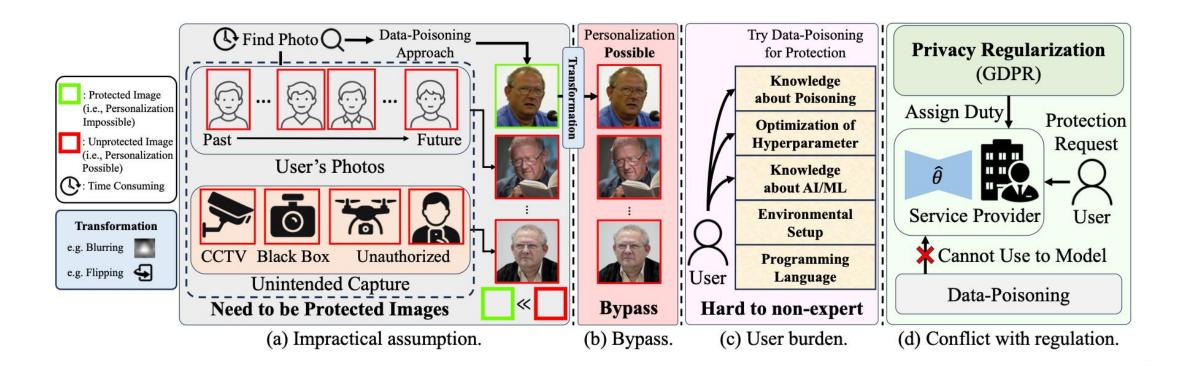


- Conflict with regulation.
 - Service provider cannot use the existing approach on their service model.



Key Insight

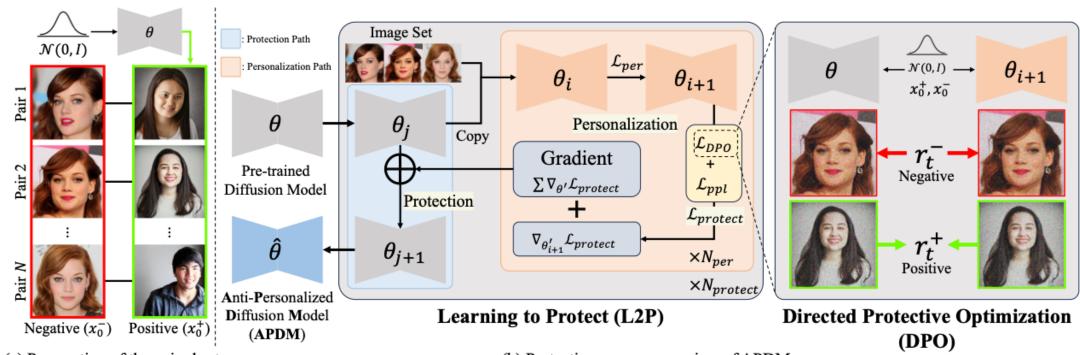
Beyond the data dependency → Perturb a Model, Not an Image



APDM Anti-Personalized Diffusion Model

Overview

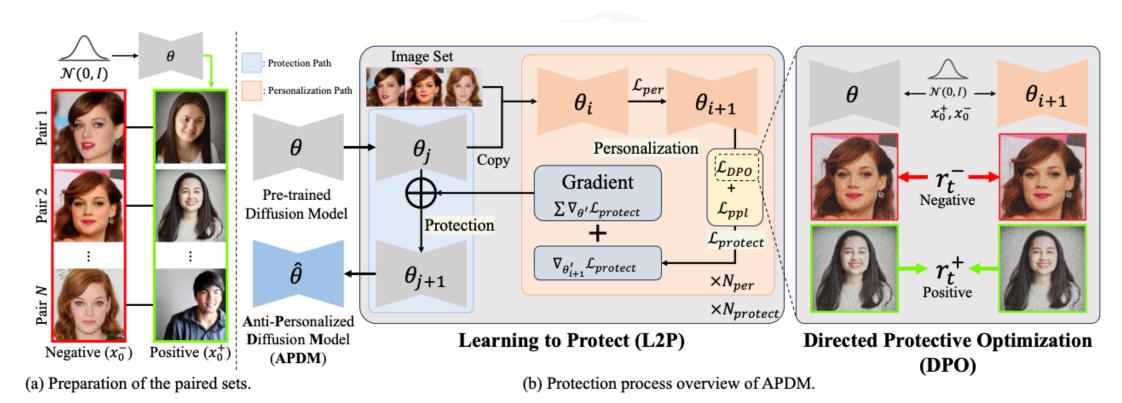
- Anti-Personalized Diffusion Model (APDM)
 - Directed Protective Optimization (DPO)
 - Learning to Protect (L2P)



(a) Preparation of the paired sets.

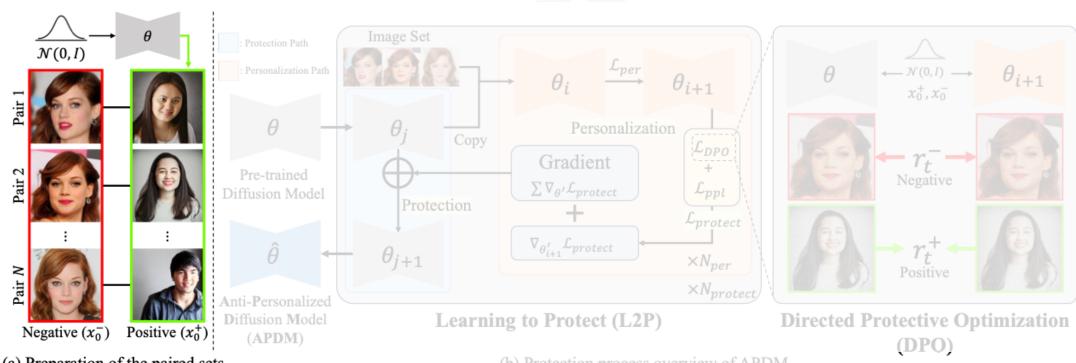
(b) Protection process overview of APDM.

- Directed Protective Optimization (DPO)
 - Inspired by Direct Preference Optimization [4], we directly guide the model on which information should be learned and which should be suppressed.



[4] Rafailov, Rafael, et al. "Direct preference optimization: Your language model is secretly a reward model." NeurIPS 2023.

- Prepare the paired sets for DPO.
 - **Negative** (x_0^-) : Images contain the **target of protection** (given).
 - **Positive** (x_0^+) : Images contain the **encouraging results** after protection.
 - ✓ Generated by the T2I model.



(a) Preparation of the paired sets.

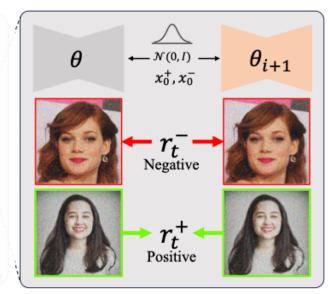
(b) Protection process overview of APDM.

- DPO loss function.
 - Goal: Encourages the generation of positive images while effectively suppressing the synthesis of negative images.

$$r^{+} = \|\epsilon_{\theta}(x_{t}^{+}, t, c) - \epsilon\|_{2}^{2} - \|\epsilon_{\phi}(x_{t}^{+}, t, c) - \epsilon\|_{2}^{2},$$

$$r^{-} = \|\epsilon_{\theta}(x_{t}^{-}, t, c) - \epsilon\|_{2}^{2} - \|\epsilon_{\phi}(x_{t}^{-}, t, c) - \epsilon\|_{2}^{2},$$

$$\mathcal{L}_{DPO} = -\mathbb{E}_{x_{0}^{+}, x_{0}^{-}, c, t, \epsilon \sim N(0, 1)} \log \sigma(-\beta(r^{+} - r^{-})).$$

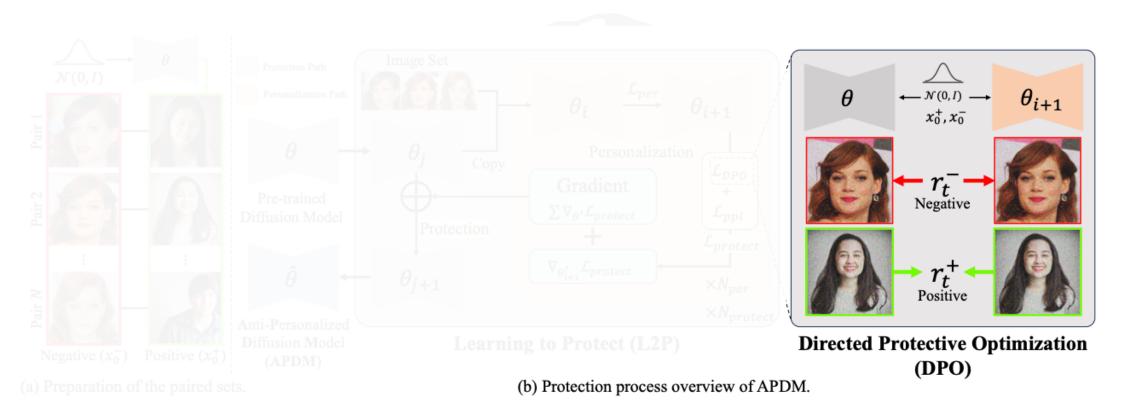


Directed Protective Optimization (DPO)

(b) Protection process overview of APDM.

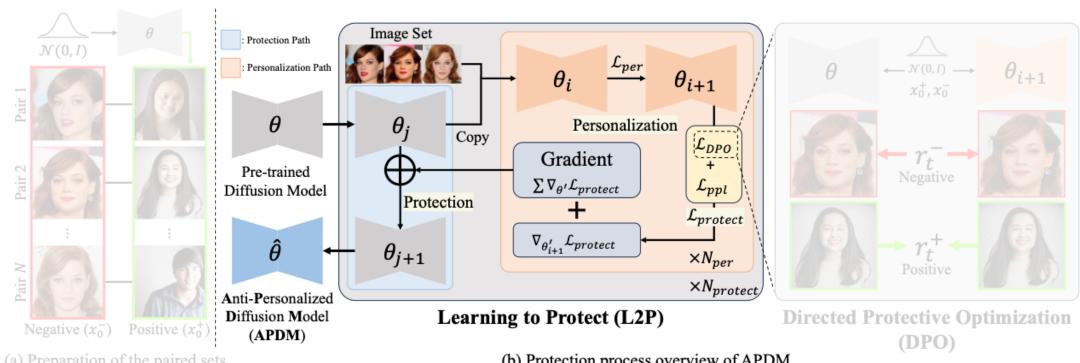
- Total protection loss function.
 - \mathcal{L}_{ppl} is prior preservation loss for preserving the general knowledge about the target.

$$\mathcal{L}_{protection} = \mathcal{L}_{DPO} + \mathcal{L}_{ppl}.$$



Learning to Protect

- Learning to Protect (L2P).
 - Goal: **Maintain the protection** effect during personalization.
 - Approach: Accumulate **protection gradients** throughout the personalization path, and apply the aggregated gradient in the protection path.



(b) Protection process overview of APDM.

ExperimentsSetting & Results

Experimental Setup

Metrics

- For protection performance:
 - ✓ DINO score (↓): Similarity-based metric.
 - ✓ BRISQUE (↑): Assessing image quality.
- For the preservation of the pre-trained model's performance:
 - ✓ FID (↓): Overall image quality.
 - ✓ CLIP score (↑): Image-text alignment metric.
 - ✓ TIFA (↑): Image-text alignment metric.
 - ✓ GenEval (↑): Image-text alignment metric.

Datasets

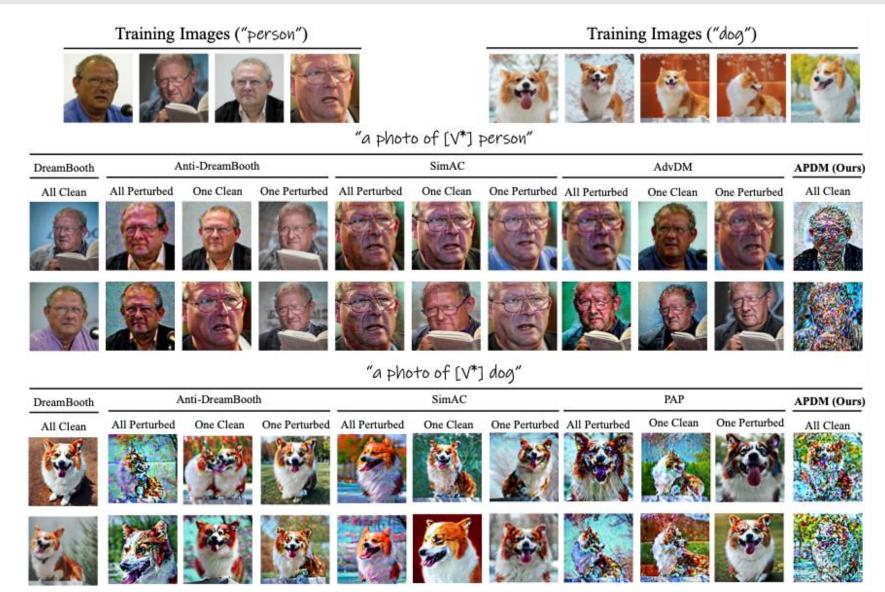
- For person: CelebA-HQ and VGGFace2
- For others: DreamBooth datasets.

Experimental Setup

Evaluation setting

- "# Clean Images" means the total number of clean (non-perturbed) images in the given set.
- "# Clean Images": 0
 - ✓ Among the total *N* images, all images are perturbed images.
- "# Clean Images": 1
 - \checkmark Among the total N images, 1 is clean images and others are perturbed images.
- "# Clean Images": N-1
 - ✓ Among the total N images, N-1 are clean images and other is perturbed image.
- "# Clean Images": N
 - \checkmark Among the total *N* images, *N* are clean images.

Experimental Results



Experimental Results

• Quantitative results.

Methods	# Clean Images	DINO (\lambda)			BRISQUE (†)		
		"person"	"dog"	Avg.	"person"	"dog"	Avg.
DreamBooth [28]	N	0.6994	0.6056	0.6525	11.27	22.33	16.80
AdvDM [16]	0	0.5752	0.4247	0.4999	19.52	28.60	24.06
	1	0.5436	0.4393	0.4915	17.82	28.58	23.20
	N-1	0.6417	0.4775	0.5596	20.30	27.36	23.83
Anti-DreamBooth [30]		0.5254	0.4106	0.4680	26.90	30.23	28.56
	1	0.6081	0.4704	0.5393	23.76	27.49	25.63
	N-1	0.6951	0.5304	0.6127	15.48	25.26	20.37
SimAC [34]		0.4448	0.4374	0.4411	23.73	31.64	27.69
	1	0.5824	0.4537	0.5181	18.04	29.54	23.79
	N-1	0.6991	0.5370	0.6181	14.28	27.05	20.67
PAP [33]		0.6556	0.5120	0.5838	22.61	30.20	26.41
	1	0.6690	0.5032	0.5861	22.02	29.00	25.51
	N-1	0.7028	0.5270	0.6149	19.64	23.41	21.53
APDM (Ours)	N	0.1375	0.0959	0.1167	40.25	60.74	50.50

Experimental Results

• Quantitative results.

Methods	FID (↓)	CLIP (†)	TIFA (↑)	GenEval (†)
Stable Diffusion [27]	25.98	0.2878	78.76	0.4303
APDM (Ours)	28.85	0.2853	75.91	0.4017

04

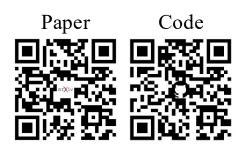
Conclusion

Summary & Future Work

Conclusion

- Main task: Robust Anti-Personalization
 - Goal: Achieve protection that is *independent of given data* and can *counteract regulation*.
 - Approach: Move the protection target from data to the model.
- Propose framework: APDM
 - Directed Protective Optimization: Guides the model on what to suppress or preserve.
 - Learning to Protect: Maintains the protection effect under continuous personalization.
- APDM achieves robust, data-independent protection with state-of-the-art performance.
- Future Direction
 - Multi-subject Protection, Continual Protection.

Thank you.



Website

E-mail

https://vgi.korea.ac.kr/

tylee0415@korea.ac.kr gm-park@korea.ac.kr