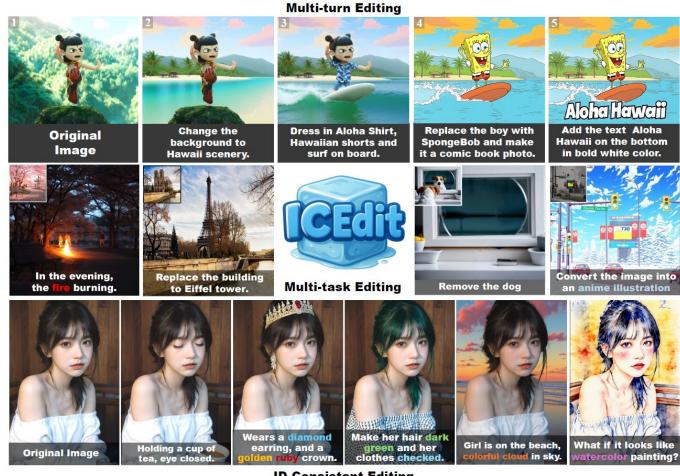
Enabling Instructional Image Editing with In-Context Generation in Large Scale Diffusion Transformer



ID Consistent Editing

Zechuan Zhang (张泽川)

I am currently a PhD student at Zhejiang University in Hangzhou, China. My PhD supervisor is Prof. Yi Yang. My research interests lie in the intersection of computer vision, machine learning. I am particularly interested in 3D vision, multi-modal, diffusion models and image generation and editing.

Prior to that, I obtained the B.Sc Degree in Geographical Information Science from Zhejiang University in 2023. I was also a member of Advanced Honor Class of Engineering Education (ACEE) at Chu Kochen Honors College (CKC) of Zhejiang University.

Email | CV | GitHub | Google Scholar | Twitter

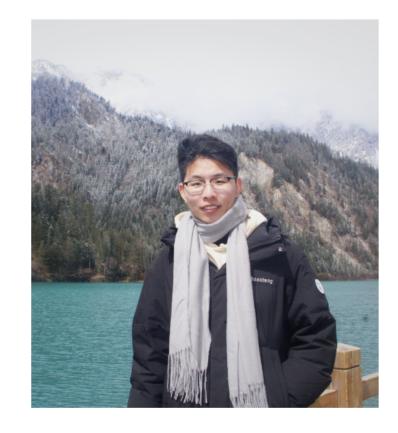


Image Editing via In-Context Generation

Ø ...

Whoa, I just tested the IC Edit @huggingface demo and it seems the new of image editing for

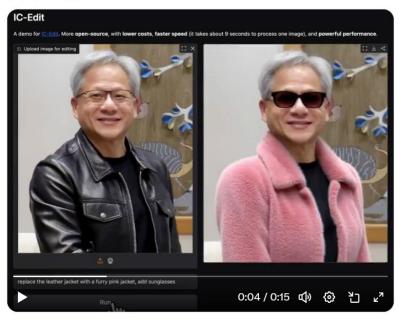
It's an image editing LoRA for FLUX featuring:

!Identity preservation (beating GPT-40)

Noes multiple edits

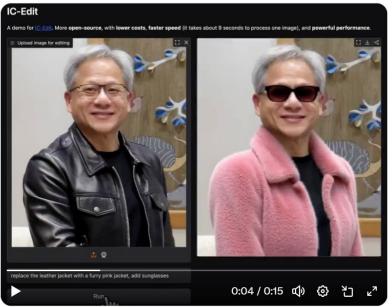
🥽 10s image editing

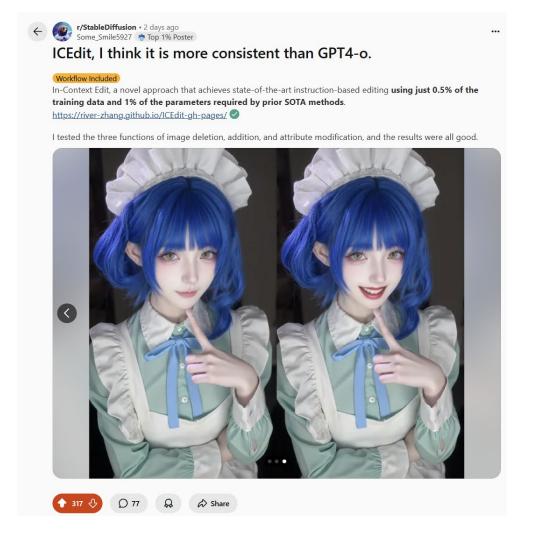
style support



Impact on community

Gaining massive traction on Twitter, Reddit, and the ComfyUI community!





Impact on community

- > Attracted over **500,000 followers** across all platforms (first month)
- > Gained more than **1,500 stars** on GitHub
- > Remained ranked second on the Hugging Face trending list for a week.

Analytics Hugging face

Last update: 3 hours ago · Next update: in 20 hours

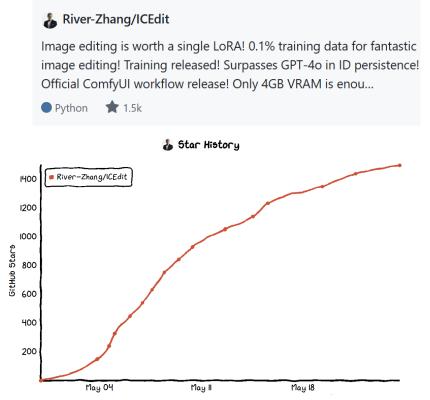
All time visits

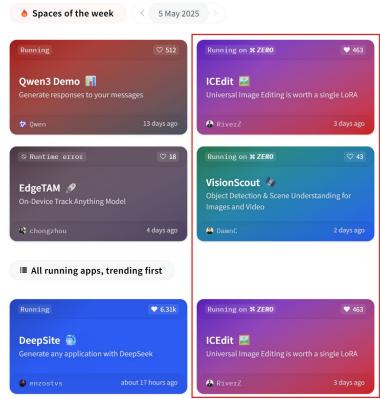
Last month visits

352,268

352,268

Project Page





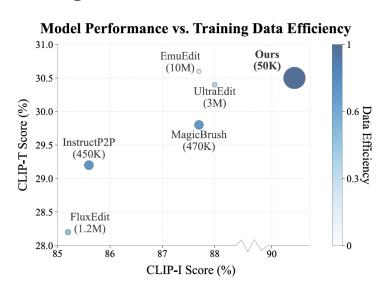
Introduction

Background:

 Instruction-based image editing has garnered significant attention for its ability to transform and process images using natural language prompts.

Challenge:

- Existing methods struggle to balance precision and efficiency.
- Training-intensive approaches achieve high-fidelity instruction execution but sacrifice efficiency, relying on: 10M+ training examples for instruction understanding; Large-scale model parameters (e.g., billions)
- Training-free methods save costs but suffer from poor editing precision.



Our approach uses only 1% training parameters and 0.1% training data for better performance.

 Training-free methods cannot directly understand instructional prompts and often fail to handle complex tasks

Motivation

How to balance precision and efficiency: motivation from previous work based on Large Scale DIT

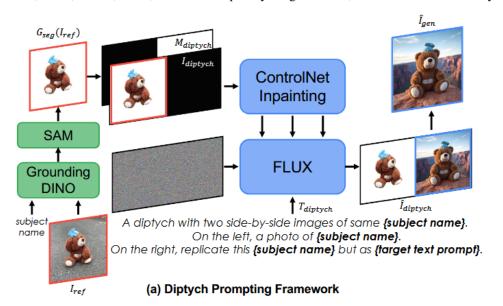
➤ No additional structure modification

Large-Scale Text-to-Image Model with Inpainting is a Zero-Shot Subject-Driven Image Generator

Chaehun Shin¹ Jooyoung Choi¹ Heeseung Kim¹ Sungroh Yoon^{1,2,*}

¹Data Science and AI Laboratory, ECE, Seoul National University

²AIIS, ASRI, INMC, ISRC, and Interdisciplinary Program in AI, Seoul National University



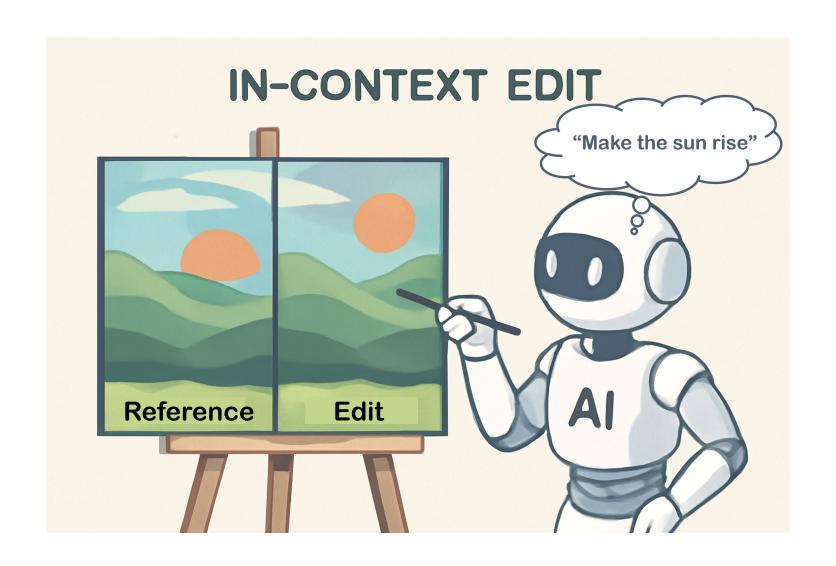
➤ No fully tuning (e.g. LoRA)

OminiControl: Minimal and Universal Control for Diffusion Transformer

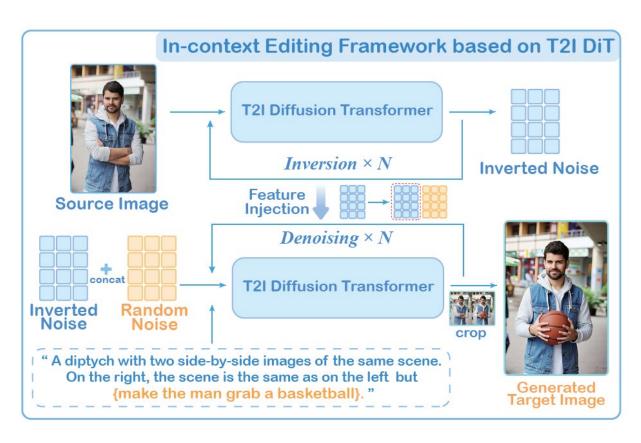
Zhenxiong Tan Songhua Liu Xingyi Yang Qiaochu Xue Xinchao Wang National University of Singapore

{zhenxiong, songhua.liu, xyang, e1352520}@u.nus.edu xinchao@nus.edu.sg

Motivation



Exploration



T2I model based framework

Inpainting model based framework

Exploration-Input Prompt Variants

- ➤ In-context Prompt instructions embedded in structure "A diptych with... On the right, the same scene but {instruction}";
- Global Descriptive Prompt uses full input/output captions ("On the left {input} On the right {output}").

Direct Edit Instruction

In-Context Edit Prompt

Input caption:

Some palm trees and other plants are sitting on a highway overpass on a cloudy day.

Input caption:

Two boys play with a yellow frisbee outdoors.

Global Descriptive Prompt

Output Caption: Some palm trees and

other plants are sitting on ... on a cloudy day with a rainbow in the sky.

Output Caption:

Two boys play with a yellow frisbee outdoors on a snowy day.

Exploration

Training-Free Methods Show Limited Performance.

- > Both T2I and inpainting DiT frameworks (based on Flux) yield suboptimal results.
- > Despite these shortcomings, both demonstrate potential in following instructions and modifying edited regions

Inpainting In-context Editing Framework Results (based on Flux.1 Fill)

Change the color of the plant pot to blue.

Change the dog to a poodle. Add text 'mirror' to the mirror red to blue.

Exploration

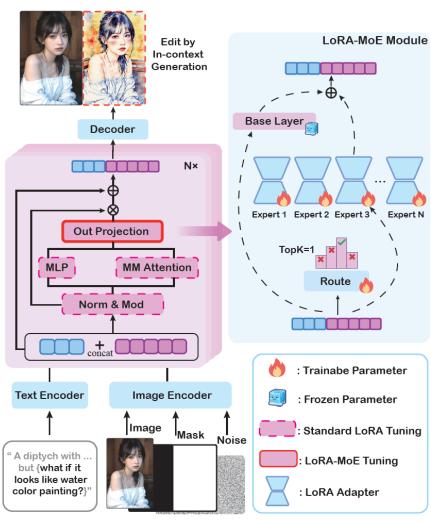
Discussion of the two training-free framework

- While both frameworks demonstrate some editing capability, their zero-shot performance is unsatisfactory
- ➤ We attribute this to the lack of learned image-to-image editing priors. This limitation could be mitigated through lightweight adjustments, such as finetuning or test-time scaling.
- ➤ Given that the T2I DiT framework requires time-consuming image inversion, we favor the inpainting-based framework for its straightforward operation, which facilitates further finetuning.

(a) Ablation study on model structure (§4.2).

Settings	Params	CLIP-I ↑	CLIP-T ↑	GPT ↑
Training-free w/o IC prompt	-	0.681	0.258	0.14
Training-free w/ IC prompt	-	0.794	0.273	0.24
Only MoE module	130M	0.929	0.300	0.51
LoRA (r=64) w/ IC prompt	240M	0.911	<u>0.301</u>	0.60
Ours w/o IC prompt	214M	0.896	0.300	0.62
Ours	214M	0.907	0.305	0.68

Finetuning



(b) Finetuning Strategy for ICEdit

Training Data (Randomly Selected)

Table 1: Dataset Statistics by Task Type

Task Type	Removal	Addition	Swap	Attribute Mod.	Style	Total
Count	13,272	11,938	5,823	11,484	10,530	53,047

OMNIEDIT: BUILDING IMAGE EDITING GENERALIST MODELS THROUGH SPECIALIST SUPERVISION

 $^{1.3}\mathrm{Cong~Wei}^*, ^{2.3}\mathrm{Zheyang~Xiong}^*, ^{1.3}\mathrm{Weiming~Ren,} \, ^{4}\mathrm{Xinrun~Du,} \, ^{1.4}\mathrm{Ge~Zhang,} \, ^{1.3}\mathrm{Wenhu~Chen} \, ^{1}\mathrm{University~of~Waterloo,} \, ^{2}\mathrm{University}~of~Waterloo, ^{2}\mathrm{Cong.weie} \, ^{4}\mathrm{M-A-Poong.weie} \, ^{4}\mathrm{Waterloo,ca} \, ^{2}\mathrm{cong.weie} \, ^{4}\mathrm{Weiterloo,ca} \, ^{2}\mathrm{cong.weie} \, ^{4}\mathrm{Weiterloo,ca} \, ^{2}\mathrm{Cong.weie} \, ^{2}\mathrm{Con$

https://tiger-ai-lab.github.io/OmniEdit/

OmniEdit

MAGICBRUSH : A Manually Annotated Dataset for Instruction-Guided Image Editing

Kai Zhang^{1*} Lingbo Mo^{1*} Wenhu Chen² Huan Sun¹ Yu Su¹

¹The Ohio State University ² University of Waterloo

²Chang, 13253, mo.169, su.809)*0su.edu

https://osu-nlp-group.github.io/MagicBrush

Magicbrush

Experiment

Test results in paper

Table 1: **Quantitative results on Emu Test set** (§4.1). Following [4, 3], we compute CLIP-I and DINO scores between the source and edited image, while CLIP-out measures the distance between output caption and edited image. We also employ GPT-40 to evaluate the edited results. The Train. Pa. means parameters finetuned for the editing task. * indicates methods that rely on output captions.

Methods	Base Model	Train. Pa.	Data Usage	CLIP-I↑	CLIP-Out ↑	DINO ↑	GPT ↑
InstructP2P [CVPR23]	SD 1.5	0.9B	0.45M	0.856	0.292	0.773	0.36
MagicBrush [NeurIPS23]	SD 1.5	0.9B	0.47M	0.877	0.298	0.807	0.48
EmuEdit [CVPR24]	Close Source	2.8B	10 M	0.877	0.306	0.844	0.72
UltraEdit [NeurIPS24]	SD 3	2.5B	3M	0.880	0.304	0.847	0.54
FluxEdit [huggingface]	Flux.1 dev	12B	1.2M	0.852	0.282	0.760	0.22
FLUX.1 Fill [huggingface]	Flux.1 Fill	-	-	0.794	0.273	0.659	0.24
RF-Solver Edit* [ICML25]	Flux.1 dev	-	-	0.797	0.309	0.683	0.32
ACE++ [arXiv25]	Flux.1 Fill	12B	54 M	0.791	0.280	0.687	0.24
ICEdit (ours)	Flux.1 Fill	0.2B	0.05M	0.907	0.305	0.866	0.68

Table 2: **Quantitative results on MagicBrush test set.** Following [4], all metrics are calculated between the edited image and GT edited image provided by MagicBrush [2].

Methods	$L1\downarrow$	CLIP-I ↑	DINO ↑
InstructP2P	0.114	0.851	0.744
MagicBrush	0.074	0.908	0.847
UltraEdit	0.066	0.904	0.852
FluxEdit	0.114	0.779	0.663
FLUX.1 Fill	0.192	0.795	0.669
RF-Solver Edit*	0.112	0.766	0.675
ACE++	0.195	0.741	0.591
ICEdit (ours)	0.060	0.928	0.853

Our method achieves higher editing accuracy and better preservation of non-editing regions compared to existing approaches.

Test time scaling

- During inference, we find that initial noise significantly shapes editing outcomes, with some inputs producing results better aligned with human preferences.
- In instruction-based editing, we observe that success in instruction alignment often become evident in few inference steps, we can evaluate edit success with only a few steps

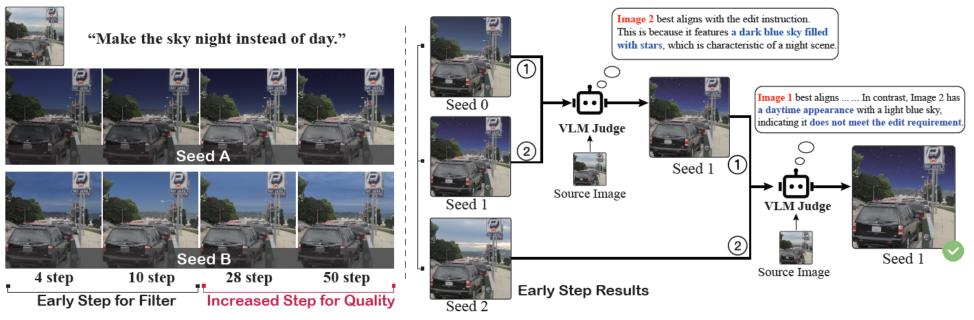


Figure 6: **Illustration of Inference-Time Scaling Strategy** (§3.3). The upper rows demonstrate that edit success can be assessed within a few initial steps. These early results are used to filter the optimal initial noise with VLM judges.

The proposed inference-time scaling strategy can quickly filter the best editing candidates at the inference stage, improving editing quality and stability.

Input

Make the sky **night** instead of day

Inf. Scal.

Change the image so it **appears to be snowing**.

Add the word
"Elegance" above
the towels on the
wall to the left.

Convert the image into an anime illustration

More harmonious editing results

SeedEdit (Doubao)

Commercial SeedEdit(Doubao)

Ours

Multi-task and ID consistent editing

In the evening, the fire burning.

Replace the building to Eiffel tower.

Remove the dog.

Original Image

Holding a cup of tea, eye closed.

Wears a diamond earring, Make her hair dark green and a golden ruby crown. and her clothes checked.

Girl is on the beach, colorful cloud in the sky.

What if it looks like watercolor painting?

Multi-turn edits

Original Image

Change the background to Hawaii scenery.

shorts and surf on board.

Dress in Aloha Shirt, Hawaiian Replace the boy with SpongeBob Add the text "ICCV2025" on the and make it a comic book photo.

bottom in **bold white color**.

Image-to-image translation

input

output

Some Limitations

➤ Object Movement: Instructions requiring spatial relocation (e.g., "move the chair to the corner") may fail due to insufficient exposure to motion oriented data in general editing datasets.

> Semantic Understanding Limitations: While T5 demonstrates strong text encoding capabilities, its semantic understanding remains constrained, particularly in resolving polysemous terms

Figure 7: Some failure cases of our methods, such as object movement, semantic ambiguity.

Thanks!