





Sina Sajadmanesh



Jingtao Li



Lingjuan Lyu

# StelLA: Subspace Learning in Low-rank Adaptation using Stiefel Manifold

06.11.2025

Sony Al



### What is StelLA?

#### LoRA

• Given a pre-trained weight matrix  $W \in \mathbb{R}^{m \times n}$ , LoRA computes the adapted weight as

$$W + BA^{\mathsf{T}}$$

where  $B \in \mathbb{R}^{m \times r}$  and  $A \in \mathbb{R}^{n \times r}$ . W is frozen during training.

#### StelLA

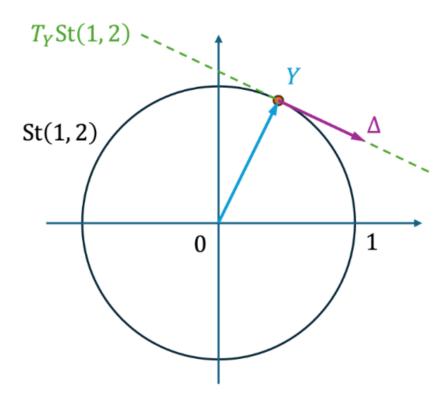
• Represent the low-rank adaptation in the SVD-style

$$W + USV^{\mathsf{T}}$$

where  $U \in \operatorname{St}(r, m)$  and  $V \in \operatorname{St}(r, n)$  lie in the Stiefel manifold.  $S \in \mathbb{R}^{r \times r}$ .

### Stiefel Manifold

- The Stiefel manifold St(k, n) is the set of all  $n \times k$  matrices with orthonormal columns.
- For example, St(1, 2) consists of all unit vectors in the 2D plane. It is the unit circle as shown in the right figure.

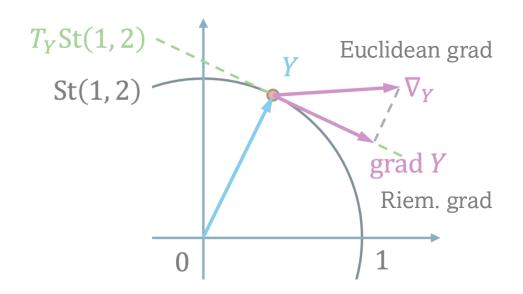


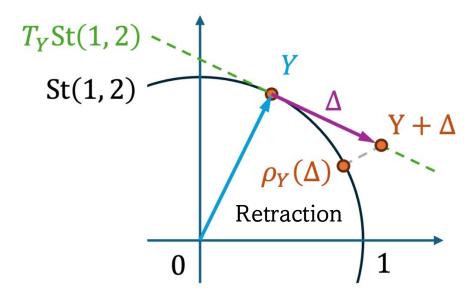
(a) The manifold St(1,2) and the tangent space  $T_YSt(1,2)$  at point Y.



## Optimization on Stiefel Manifold

Riemannian optimization:





Convert gradient from Euclidean to Riemannian

by projection

Retract  $Y + \Delta$  back to Stiefel manifold by QR decomposition

## StelLA Implementation

#### Algorithm 1 StelLA: Stiefel Low-Rank Adaptation

**Require:** Pre-trained weight  $W \in \mathbb{R}^{m \times n}$ , loss function  $\mathcal{L}$ , a Euclidean optimizer's step function 'step', rank r, scale factor  $\alpha$ , number of iterations T.

- 1: Randomly initialize  $U_0 \in \operatorname{St}(r,m)$  and  $V_0 \in \operatorname{St}(r,n)$ , set  $S_0 \leftarrow I_r$ .
- 2: **for**  $t \leftarrow 0$  to T 1 **do**
- 3: Compute loss:  $\mathcal{L}_t \leftarrow \mathcal{L}(W + \frac{\alpha}{r}U_tS_tV_t^{\top})$ .
- 4: Compute Euclidean gradients:  $\nabla_{U_t}$ ,  $\nabla_{S_t}$ ,  $\nabla_{V_t}$ .
- 5: Convert Euclidean gradients to Riemannian:

$$\operatorname{grad}_{U_t} \leftarrow \nabla_{U_t} - U_t \nabla_{U_t}^\top U_t, \quad \operatorname{grad}_{V_t} \leftarrow \nabla_{V_t} - V_t \nabla_{V_t}^\top V_t.$$

6: Take tentative steps using the given optimizer's step function:

▶ *e.g.*, using Adam

$$\tilde{U}_{t+1} \leftarrow \text{step}(U_t, \text{grad}_{U_t}), \quad \tilde{V}_{t+1} \leftarrow \text{step}(V_t, \text{grad}_{V_t}), \quad S_{t+1} \leftarrow \text{step}(S_t, \nabla_{S_t}).$$

7: Project the perturbed gradients  $\tilde{U}_{t+1} - U_t$ ,  $\tilde{V}_{t+1} - V_t$  back to the tangent space:

$$\Delta_{U_t} \leftarrow \pi_{U_t}(\tilde{U}_{t+1} - U_t), \quad \Delta_{V_t} \leftarrow \pi_{V_t}(\tilde{V}_{t+1} - V_t).$$

- 8: Update and retract back to the manifold:  $U_{t+1} \leftarrow \rho_{U_t}(\Delta_{U_t}), V_{t+1} \leftarrow \rho_{V_t}(\Delta_{V_t}).$
- 9: **end for**
- 10: **return** Adapted weight:  $\tilde{W} \leftarrow W + \frac{\alpha}{r} U_T S_T V_T^{\top}$ .



## Highlights

- Easy to implement
  - By using optimizer pre/post-hooks
  - Work with PyTorch optimizers
- Easy to use
  - Integrated to the peft library
- Efficient
  - Use fast svd driver (1.5x speed up)
  - Batched svd (15x speed up)
  - Only 15% slower than vanilla LoRA (train commonsense on LLaMA3-8B)



## Results

Table 1: Accuracy on the commonsense reasoning benchmark. All results are averaged over 3 runs.

| Model     | Method      | Params (%) | BoolQ        | PIQA  | SIQA  | HellaS.      | WinoG. | ARC-e        | ARC-c | OBQA  | Avg.         |
|-----------|-------------|------------|--------------|-------|-------|--------------|--------|--------------|-------|-------|--------------|
| LLaMA2-7B | LoRA        | 0.826      | 72.02        | 83.46 | 79.87 | 90.44        | 82.69  | 84.83        | 71.19 | 81.53 | 80.76        |
|           | DoRA        | 0.838      | 72.67        | 83.48 | 79.82 | 90.82        | 83.58  | 85.16        | 71.27 | 81.20 | 81.00        |
|           | PiSSA       | 0.826      | 71.16        | 83.89 | 79.19 | 91.00        | 82.87  | 85.09        | 69.48 | 83.93 | 80.83        |
|           | OLoRA       | 0.826      | 71.11        | 82.70 | 78.64 | 89.41        | 81.48  | 83.58        | 68.17 | 80.20 | 79.41        |
|           | TriLoRA     | 0.828      | 71.23        | 80.96 | 78.33 | 80.91        | 77.59  | 81.76        | 66.69 | 79.80 | 77.16        |
|           | MoSLoRA     | 0.828      | 71.54        | 83.84 | 79.60 | 90.50        | 83.19  | 84.40        | 69.96 | 80.47 | 80.44        |
|           | ScaledAdamW | 0.826      | 72.20        | 83.86 | 79.67 | 90.80        | 82.43  | <u>85.55</u> | 70.59 | 81.93 | 80.88        |
|           | StelLA      | 0.828      | 73.62        | 84.87 | 80.64 | 91.44        | 84.50  | 86.43        | 72.84 | 84.33 | 82.33        |
| LLaMA3-8B | LoRA        | 0.700      | 75.16        | 88.14 | 80.18 | 95.41        | 86.74  | 90.84        | 78.70 | 87.00 | 85.27        |
|           | DoRA        | 0.710      | <u>75.38</u> | 88.01 | 79.94 | 95.35        | 86.29  | 90.54        | 79.69 | 86.07 | 85.16        |
|           | PiSSA       | 0.700      | 74.67        | 88.12 | 80.50 | 94.98        | 85.22  | 90.15        | 78.87 | 85.60 | 84.76        |
|           | OLoRA       | 0.700      | 74.41        | 87.68 | 79.55 | 94.79        | 85.40  | 90.04        | 78.24 | 85.00 | 84.39        |
|           | TriLoRA     | 0.702      | 73.09        | 86.64 | 78.64 | 93.40        | 82.88  | 87.76        | 75.26 | 84.30 | 82.74        |
|           | MoSLoRA     | 0.702      | 74.88        | 88.43 | 80.31 | 95.50        | 86.26  | 90.00        | 79.86 | 85.80 | 85.13        |
|           | ScaledAdamW | 0.700      | 75.24        | 88.57 | 80.21 | <u>95.81</u> | 85.11  | 91.09        | 80.55 | 86.60 | <u>85.40</u> |
|           | StelLA      | 0.702      | <b>75.91</b> | 89.86 | 81.68 | 96.41        | 87.82  | 91.98        | 82.34 | 87.80 | 86.72        |

### Thank you!



https://github.com/SonyResearch/stella

