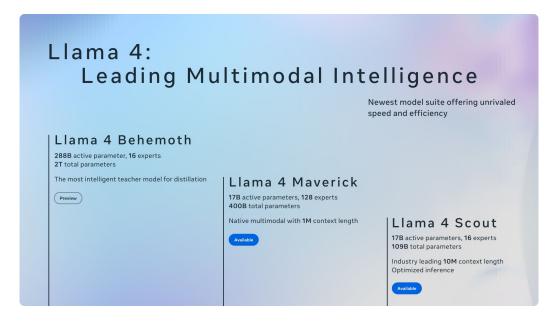
Neural Networks for Learnable and Scalable Influence Estimation of Instruction Fine-Tuning Data

Ishika Agarwal, Dilek Hakkani-Tür

Siebel School of Computing and Data Science

LLM training is expensive

- Llama 4
- Rumored to have been pre-trained on 32k H100's
- Quality data is scarce



- More efficient model architectures
- 2. Faster hardware
- Fewer data

Efficient Memory Management for Large Language Model Serving with *PagedAttention*

Woosuk Kwon^{1,*} Zhuohan Li^{1,*} Siyuan Zhuang¹ Ying Sheng^{1,2} Lianmin Zheng¹ Cody Hao Yu³

Joseph E. Gonzalez¹ Hao Zhang⁴ Ion Stoica¹

¹UC Berkeley ²Stanford University ³Independent Researcher ⁴UC San Diego

FLASHATTENTION: Fast and Memory-Efficient Exact Attention with IO-Awareness

Tri Dao[†], Daniel Y. Fu[†], Stefano Ermon[†], Atri Rudra[‡], and Christopher Ré[†]

†Department of Computer Science, Stanford University †Department of Computer Science and Engineering, University at Buffalo, SUNY {trid,danfu}@cs.stanford.edu, ermon@stanford.edu, atri@buffalo.edu, chrismre@cs.stanford.edu

- More efficient model architectures
- 2. Faster hardware
- Fewer data

In-Datacenter Performance Analysis of a Tensor Processing UnitTM

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon

Email: {jouppi, cliffy, nishantpatil, davidpatterson} @google.com

Training Giant Neural Networks Using Weight Streaming on Cerebras Wafer-Scale Clusters

Stewart Hall, Rob Schreiber, Sean Lie, Cerebras Systems, Inc.

- More efficient model architectures
- 2. Faster hardware
- 3. Fewer data

LESS: Selecting Influential Data for Targeted Instruction Tuning

Mengzhou Xia 1* Sadhika Malladi 1* Suchin Gururangan 2 Sanjeev Arora 1 Danqi Chen 1

VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

Jun Chen¹, Han Guo², Kai Yi ¹, Boyang Li³, Mohamed Elhoseiny¹

¹ King Abdullah University of Science and Technology (KAUST),

² Carnegie Mellon University, ³ Nanyang Technological University

{jun.chen, kai.yi, mohamed.elhoseiny}@kaust.edu.sa
hanguo@cs.cmu.edu,boyang.li@ntu.edu.sg

- More efficient model architectures
- Faster hardware
- 3. Fewer data

LESS: Selecting Influential Data for Targeted Instruction Tuning

Mengzhou Xia 1* Sadhika Malladi 1* Suchin Gururangan 2 Sanjeev Arora 1 Danqi Chen 1

VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

Jun Chen¹, Han Guo², Kai Yi ¹, Boyang Li³, Mohamed Elhoseiny¹

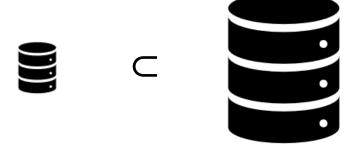
¹ King Abdullah University of Science and Technology (KAUST),

²Carnegie Mellon University, ³ Nanyang Technological University

{jun.chen, kai.yi, mohamed.elhoseiny}@kaust.edu.sa
hanguo@cs.cmu.edu,boyang.li@ntu.edu.sg

Influence estimation...?

- How important is this data point?
- i.e. influence function (Koh & Liang 2017) or data valuation
- Use it to choose a subset of influential samples



- Model Dependent

- Model Independent

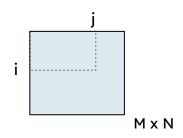
Model Dependent

- Subset is specific to model's weaknesses
- Uses model-specific signals like confidence, performance, gradients

Model Independent

- Subset can be used for any model
- Uses clustering-based or semantic similarity based methods

- Model Dependent
 - Subset is specific to model's weaknesses
 - Uses model-specific signals like confidence, performance, gradients
- Model Independent
 - Subset can be used for any model
 - Uses clustering-based or semantic similarity based methods
- sim(i, j) = Influence of j on i



Influence estimation is expensive!

- Forward/backprop using a language model

Method	Cost	Size
Pairwise		
DELIFT (Agarwal et al., 2025)	$\mathcal{O}(MN) \cdot F$	7-8B
DELIFT (SE) (Agarwal et al., 2025)	$\mathcal{O}(MN) \cdot F$	355M
LESS (Xia et al., 2024)	$\mathcal{O}(M+N)\cdot B$	7-8B
(spoiler)	ote to	
Pointwise		
SelectIT (Liu et al., 2024a)	$\mathcal{O}(M) \cdot F$	7-8B
(spoiler)	26 1 15	

- Inference/backprop using a language model

Method	Cost	Size		
Pairwise				
DELIFT (Agarwal et al., 2025) These works estimate (spoiler)	influence but.	7-8B 355M 7-8B		
Pointwise				
SelectIT (Liu et al., 2024a)	$\mathcal{O}(M) \cdot F$	7-8B		

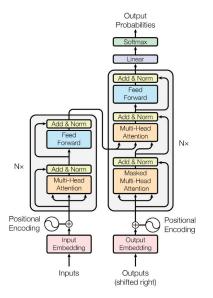
- Inference/backprop using a language model

Method	Cost	Size
Pairwise		
DELIFT (Agarwal et al., 2025)	$\mathcal{O}(MN) \cdot F$	7-8B
DELIET (CE) (A 1	$\Omega(\Lambda(\Lambda T))$	25514
an we <i>learn to estimate</i>	influence inste	ead?
an we <i>learn to estimate</i>	$O(M+N)\cdot B$	ead?
	$O(M+N)\cdot B$	ead?
LESS (X1a et al., 2024) (spoiler)	$O(M+N)\cdot B$	7-8B

LLM-based influence functions

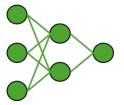
- Input: text data

- Output: influence score



Train a neural network:

- Input: (embedded) text data
- Output: influence score



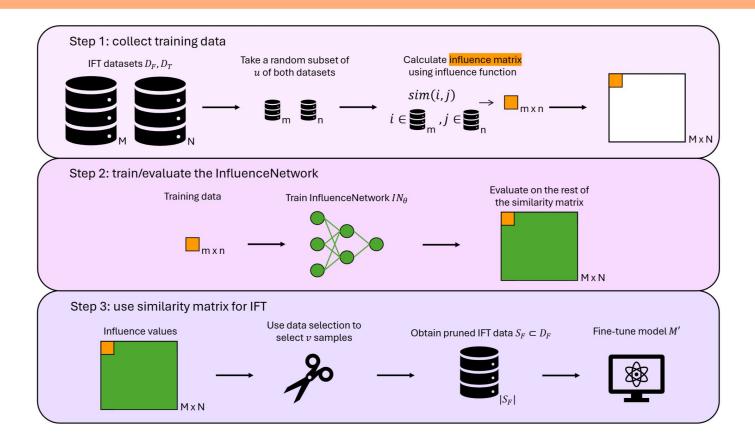
Method	Cost	Size
Pairwise		
DELIFT (Agarwal et al., 2025)	$\mathcal{O}(MN) \cdot F$	7-8B
DELIFT (SE) (Agarwal et al., 2025)	$\mathcal{O}(MN) \cdot F$	355M
LESS (Xia et al., 2024)	$\mathcal{O}(M+N)\cdot B$	7-8B
(spoiler)	1000 W	
Pointwise		
SelectIT (Liu et al., 2024a)	$\mathcal{O}(M) \cdot F$	7-8B
(spoiler)		

Method	Cost	Size
Pairwise		
DELIFT (Agarwal et al., 2025)	$\mathcal{O}(MN) \cdot F$	7-8B
DELIFT (SE) (Agarwal et al., 2025)	$\mathcal{O}(MN) \cdot F$	355M
LESS (Xia et al., 2024)	$\mathcal{O}(M+N)\cdot B$	7-8B
NN-CIFT (ours)	$\mathcal{O}(MN) \cdot F$	205K
Pointwise		
SelectIT (Liu et al., 2024a)	$\mathcal{O}(M) \cdot F$	7-8B
NN-CIFT (ours)	$\mathcal{O}(M)\cdot F$	205K

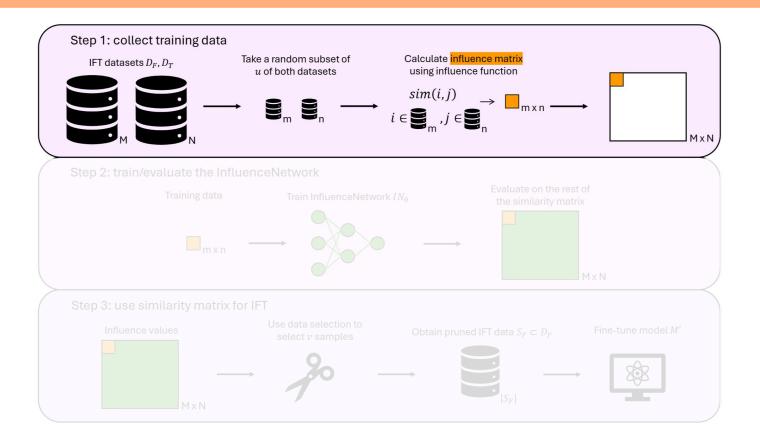
Method	Cost	Size
Pairwise		
DELIFT (Agarwal et al., 2025) DELIFT (SE) (Agarwal et al., 2025) LESS (Xia et al., 2024) NN-CIFT (ours)	$\mathcal{O}(MN) \cdot F$ $\mathcal{O}(MN) \cdot F$ $\mathcal{O}(M+N) \cdot B$ $\mathcal{O}(MN) \cdot F$	7-8B 355M 7-8B 205K
Pointwise		
SelectIT (Liu et al., 2024a) NN-CIFT (ours)	$\mathcal{O}(M) \cdot F$ $\mathcal{O}(M) \cdot F$	7-8B 205K

Model size reduces by 99.73%!

NN-CIFT: Neural Networks for Efficient Instruction Fine-Tuning

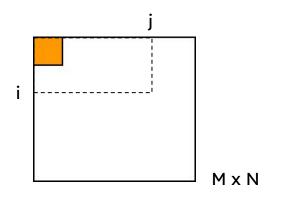


NN-CIFT



NN-CIFT → Step 1: collect training data

Use existing influence function to calculate a few influence scores

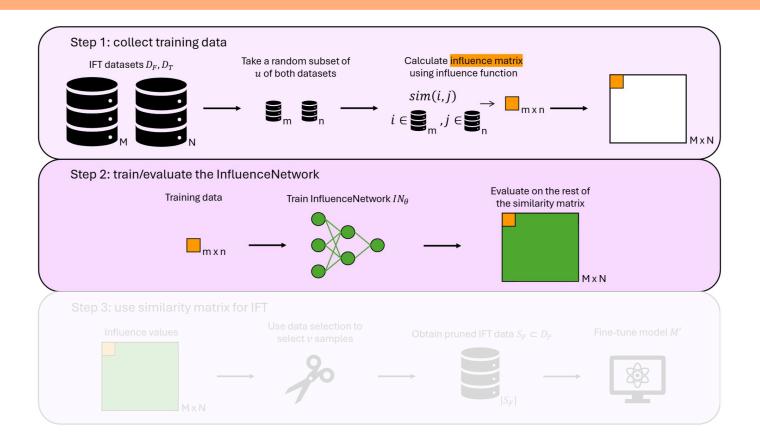


sim(i, j) = Influence of j on i

Our evaluation uses:

- 1. DELIFT [Agarwal et al. 2025]
- 2. + DELIFT (SE)
- 3. LESS [Xia et al. 2024]
- 4. SelectIT [Liu et al. 2024]

NN-CIFT



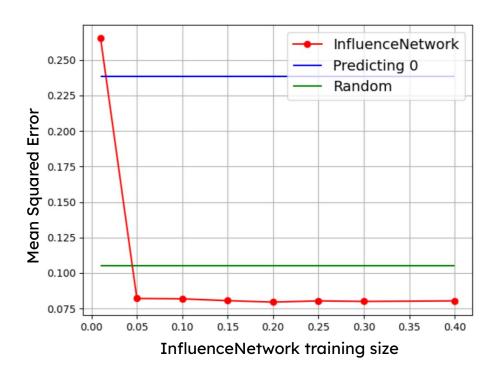
NN-CIFT → Step 2: train the InfluenceNetwork

InfluenceNetwork definition:

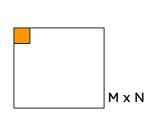
```
class InfluenceNetwork(nn.Module):
    def __init__(self, dim, hidden_size=100):
        super(InfluenceNetwork, self).__init__()
        self.fc1 = nn.Linear(dim, hidden_size) \( \to [2049 \times 100] \)
        self.activate = nn.ReLU()
        self.fc2 = nn.Linear(hidden_size, 1) \( \to [100 \times 1] \)
```

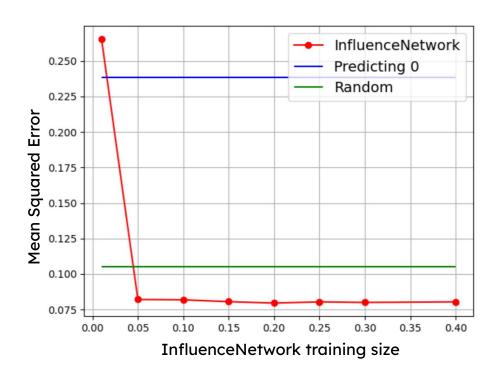
Use mini-batch gradient descent to train

MSE on validation: 0.072!

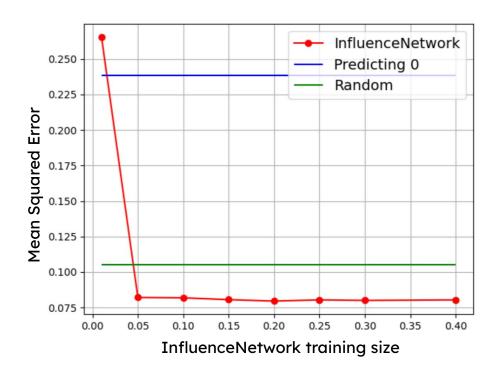


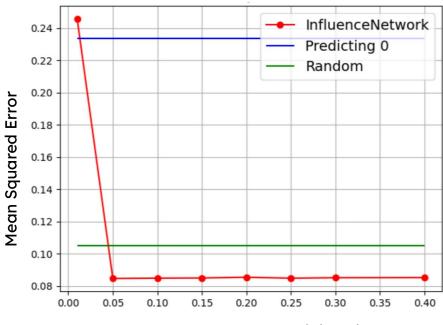
MSE on validation: 0.072!



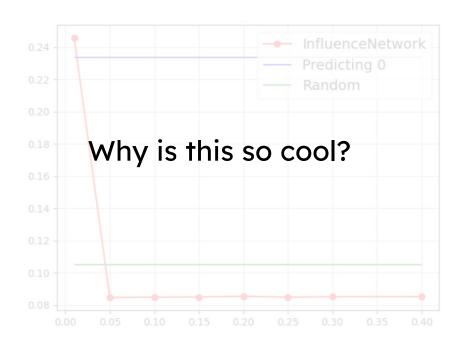


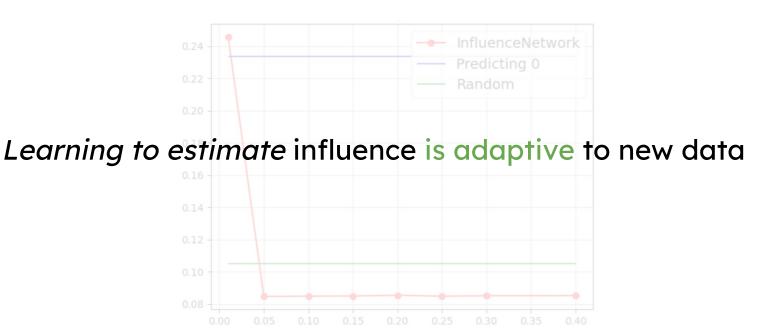
MSE on validation: 0.072!



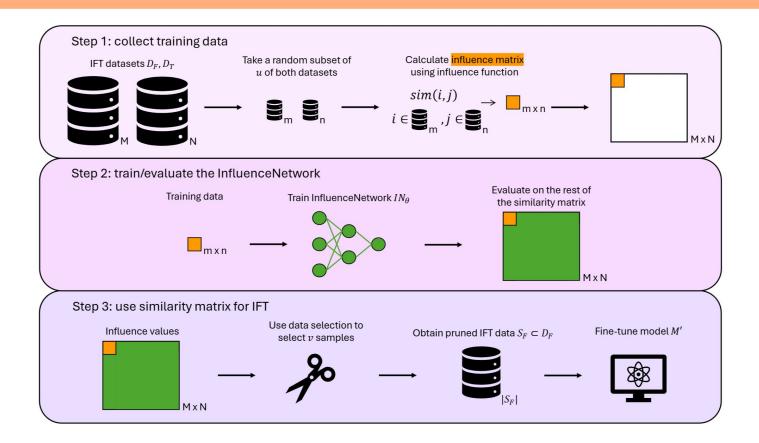


InfluenceNetwork training size





NN-CIFT



NN-CIFT \rightarrow Step 3: use sim. matrix for IFT \rightarrow does pruning work?

Results on Phi-3

Dataset			MixI	struct		Alpaca						
Method	20	ICL			QLoRA			ICL		QLoRA		
Metric	ROUGE	BGE	LAJ	ROUGE	BGE	LAJ	ROUGE	BGE	LAJ	ROUGE	BGE	LAJ
Initial	37.87	78.92	2.98	36.36	82.55	3.02	25.79	67.82	2.56	27.29	71.57	2.62
Random	39.00	80.66	3.12	44.45	85.46	3.12	34.93	73.50	3.07	35.57	75.16	2.96
SelectIT	43.08	84.50	3.18	45.14	85.88	3.21	33.56	77.10	3.12	34.04	78.10	3.21
NN-CIFT + SelectIT	43.71	81.95	3.16	46.09	86.13	3.19	34.85	77.79	3.13	34.07	78.11	3.16
LESS	42.08	83.24	3.26	45.16	84.95	3.28	35.78	76.84	3.16	35.28	76.49	3.15
NN-CIFT + LESS	42.84	83.74	3.26	45.18	84.63	3.26	36.12	77.11	3.16	36.49	75.75	3.16
DELIFT (SE)	47.43	84.40	3.28	48.22	86.50	3.28	37.53	80.76	3.25	42.66	84.26	3.18
NN-CIFT + DELIFT (SE)	47.30	82.99	3.23	46.49	84.68	3.29	37.02	80.72	3.26	42.52	84.58	3.29
DELIFT	48.46	85.77	3.35	52.79	88.04	3.37	38.36	81.13	3.36	43.43	85.05	3.56
NN-CIFT + DELIFT	48.57	83.90	3.41	53.30	81.34	3.54	38.99	80.29	3.49	44.64	85.23	3.57
Full Data	58.65	88.72	3.45	65.51	92.24	3.51	35.27	77.85	3.31	39.29	78.85	3.29

NN-CIFT → Step 3: use sim. matrix for IFT → does pruning work?

Results on Phi-3

Dataset			MixI	nstruct		Alpaca						
Method	20	ICL			QLoRA			ICL	- 25	QLoRA		
Metric	ROUGE	BGE	LAJ	ROUGE	BGE	LAJ	ROUGE	BGE	LAJ	ROUGE	BGE	LAJ
Initial	37.87	78.92	2.98	36.36	82.55	3.02	25.79	67.82	2.56	27.29	71.57	2.62
Random	39.00	80.66	3.12	44.45	85.46	3.12	34.93	73.50	3.07	35.57	75.16	2.96
SelectIT	43.08	84.50	3.18	45.14	85.88	3.21	33.56	77.10	3.12	34.04	78.10	3.21
NN-CIFT + SelectIT	43.71	81.95	3.16	46.09	86.13	3.19	34.85	77.79	3.13	34.07	78.11	3.16
LESS	42.08	83.24	3.26	45.16	84.95	3.28	35.78	76.84	3.16	35.28	76.49	3.15
NN-CIFT + LESS	42.84	83.74	3.26	45.18	84.63	3.26	36.12	77.11	3.16	36.49	75.75	3.16
DELIFT (SE)	47.43	84.40	3.28	48.22	86.50	3.28	37.53	80.76	3.25	42.66	84.26	3.18
NN-CIFT + DELIFT (SE)	47.30	82.99	3.23	46.49	84.68	3.29	37.02	80.72	3.26	42.52	84.58	3.29
DELIFT	48.46	85.77	3.35	52.79	88.04	3.37	38.36	81.13	3.36	43.43	85.05	3.56
NN-CIFT + DELIFT	48.57	83.90	3.41	53.30	81.34	3.54	38.99	80.29	3.49	44.64	85.23	3.57
Full Data	58.65	88.72	3.45	65.51	92.24	3.51	35.27	77.85	3.31	39.29	78.85	3.29

Difference between NN-CIFT and original influence function is 1.40%!

NN-CIFT → Step 3: use sim. matrix for IFT → does pruning work?

Results on Llama-8B

Dataset			MixIr	struct		Alpaca						
Method	d a	ICL			QLoRA			ICL		QLoRA		
Metric	ROUGE	BGE	LAJ	ROUGE	BGE	LAJ	ROUGE	BGE	LAJ	ROUGE	BGE	LAJ
Initial	28.53	74.05	2.94	34.42	78.54	3.00	24.85	72.45	2.26	34.29	80.82	3.03
Random	40.07	84.04	3.26	41.68	84.26	3.22	36.95	80.47	3.12	38.64	80.46	3.07
SelectIT	46.51	86.18	3.25	50.31	87.38	3.25	41.42	83.25	3.27	44.51	84.18	3.34
NN-CIFT + SelectIT	46.48	85.86	2.28	50.87	87.43	3.26	42.07	83.67	3.27	44.99	85.13	3.37
LESS	48.21	86.19	3.34	51.24	86.07	3.37	43.34	84.19	3.38	44.73	84.04	3.32
NN-CIFT + LESS	48.20	86.31	3.36	51.56	86.39	3.41	44.42	84.69	3.32	46.40	85.44	3.36
DELIFT (SE)	48.36	85.91	3.38	51.43	86.20	3.34	44.30	85.52	3.41	45.35	86.34	3.48
NN-CIFT + DELIFT (SE)	48.59	85.01	3.39	50.53	86.10	3.33	45.49	86.27	3.44	45.75	86.45	3.47
DELIFT	51.66	88.02	3.43	55.58	91.81	3.50	46.49	87.60	3.50	49.16	87.74	3.54
NN-CIFT + DELIFT	52.03	88.38	3.41	55.85	91.96	3.51	46.26	87.41	3.55	49.15	87.74	3.50
Full Data	54.43	92.55	3.40	59.47	94.12	3.58	48.53	91.21	3.63	48.29	90.82	3.66

NN-CIFT \rightarrow Step 3: use sim. matrix for IFT \rightarrow what about the cost?

Costs (seconds) are cut down by 77% to 99%

Model	Phi-3	3	Llama-	Llama-8B			
Dataset	MixInstruct	Alpaca	MixInstruct	Alpaca			
Initial	-	-		-			
Random	12.4	12.3	12.9	12.3			
SelectIT	7,047	6,594	6,671	6,470			
NN-CIFT + SelectIT	65	63	64	63			
LESS	12,338	11,217	10,843	14,819			
NN-CIFT + LESS	78	75	74	84			
DELIFT (SE)	216	218	218	219			
NN-CIFT + DELIFT (SE)	48	48	48	48			
DELIFT	67,379	68,117	68,076	65,711			
NN-CIFT + DELIFT	215	217	217	211			
Full Data		_	_	_			

What does this all mean?

NN-CIFT...

- uses neural networks instead of language models for data valuation
- learns to estimate influence with very low error
- scales with new data, which was not previously possible
- reduces up to 99% costs without affecting performance

Cheap Neural Networks for Learnable and Scalable Influence Estimation of Instruction Fine-Tuning Ishika Agarwal, Dilek Hakkani-Tür

arXiv

GitHub

NN-CIFT...

Uses **neural networks** for data valuation – it is adaptive to new data and reduces costs by **99%**

- Uses only 5% of data to train neural network
- Network size reduces to 0.0027% of LLMs
- Accurate data selection (MSE: 0.067)

- Model Dependent

- Inference-based
 - DELIFT: quantifies how close the answer is to the ground truth
 - SelectIT: uses confidence and consistency to estimate importance
- Gradient-based
 - LESS: measures how similar the gradients are for two data points

Model Independent

- Clustering-based: data points that match a target task are better to learn

Pairwise v Pointwise

- Pairwise: uses the mutual/conditional information between two datasets
 - IFT: does Common Corpus already have this knowledge from MixInstruct?
 - Task-specific FT: what data from MixInstruct looks like GSM8k?
 - Continual learning: what data from DatasetName-v2 is different from DatasetName-v1?
- Pointwise: computes a ranking of "importance"

Evaluation Details: InfluenceNetwork

Dataset: MixInstruct

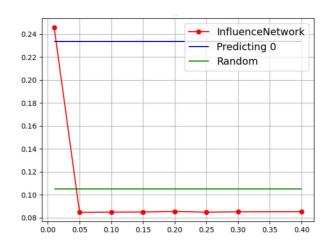
- Model: Phi-3

Influence Function: DELIFT

- MSE:

$$\frac{1}{|\mathcal{D}_{\mathcal{F}} \times \mathcal{D}_{\mathcal{T}}|} \sum_{(i,j) \in \mathcal{D}_{\mathcal{F}} \times \mathcal{D}_{\mathcal{T}}} (IF_{\theta}(i,j) - \sin(i,j))^{2}$$

- D_F → MixInstruct training
- $D_T \rightarrow MixInstruct\ validation$
- IF_theta \rightarrow InfluenceNetwork
- $sim(i,j) \rightarrow DELIFT$
- Baselines:
 - Predicting only 0 influence
 - Predicting random influence



Evaluation Details: subset selection

- Datasets: MixInstruct, Alpaca
- Model: Phi-3, Llama-8B
- Metrics:
 - ROUGE
 - BGE: cosine distance between BAAI General Embeddings
 - LAJ: Llama-as-a-Judge, Prometheus
- ICL/QLoRA:
 - ICL: use chosen subset as pool for ICL
 - QLoRA: fine-tune on chosen subset
- Baselines:
 - Initial: no subset selection
 - Random: selecting a random subset
 - Original influence function
 - Using DistilGPT2 as the LM in IFs
 - Full Data: using 100% of the data

Dataset			MixIr	struct		Alpaca						
Method		ICL		(QLoRA			ICL		QLoRA		
Metric	ROUGE	BGE	LAJ	ROUGE	BGE	LAJ	ROUGE	BGE	LAJ	ROUGE	BGE	LAJ
Initial	28.53	74.05	2.94	34.42	78.54	3.00	24.85	72.45	2.26	34.29	80.82	3.03
Random	40.07	84.04	3.26	41.68	84.26	3.22	36.95	80.47	3.12	38.64	80.46	3.07
SelectIT	46.51	86.18	3.25	50.31	87.38	3.25	41.42	83.25	3.27	44.51	84.18	3.34
DistilGPT2 + SelectIT	41.26	80.33	3.20	44.86	84.72	3.23	39.18	80.99	2.99	41.72	81.50	3.14
NN-CIFT + SelectIt	46.48	85.86	2.28	50.87	87.43	3.26	42.07	83.67	3.27	44.99	85.13	3.37
LESS	48.21	86.19	3.34	51.24	86.07	3.37	43.34	84.19	3.38	44.73	84.04	3.32
DistilGPT2 + LESS	42.18	78.34	3.23	48.64	79.09	3.27	42.02	80.89	3.29	42.51	82.35	3.29
NN-CIFT + LESS	48.20	86.31	3.36	51.56	86.39	3.41	44.42	84.69	3.32	46.40	85.44	3.36
DELIFT (SE)	48.36	85.91	3.38	51.43	86.20	3.34	44.30	85.52	3.41	45.35	86.34	3.48
DistilGPT2 + DELIFT (SE)	47.21	84.24	3.28	49.37	84.24	3.29	43.51	85.45	3.41	44.89	79.81	3.36
NN-CIFT + DELIFT (SE)	48.59	85.01	3.39	50.53	86.10	3.33	45.49	86.27	3.44	45.75	86.45	3.47
DELIFT	51.66	88.02	3.43	55.58	91.81	3.50	46.49	87.60	3.50	49.16	87.74	3.54
DistilGPT2 + DELIFT	47.09	84.74	3.26	48.21	84.24	3.28	45.08	81.45	3.41	41.07	83.22	3.44
NN-CIFT + DELIFT	52.03	88.38	3.41	55.85	91.96	3.51	46.26	87.41	3.55	49.15	87.74	3.50
Full Data	54.43	92.55	3.40	59.47	94.12	3.58	48.53	91.21	3.63	48.29	90.82	3.66