

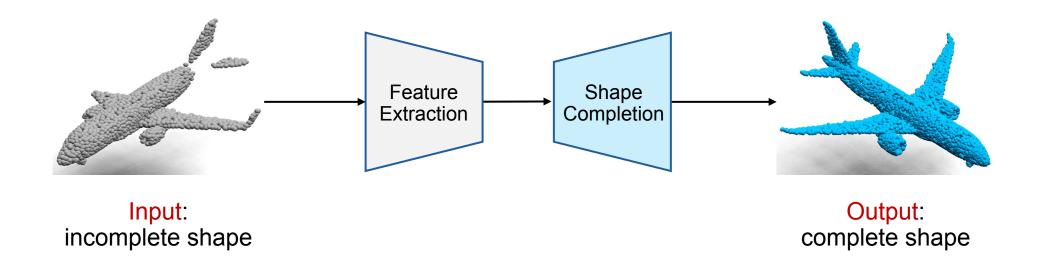
PointMAC: Meta-Learned Adaptation for **Robust Test-Time Point Cloud Completion**

Linlian Jiang, Rui Ma, Li Gu, Ziqiang Wang, Xinxin Zuo⊠, Yang Wang⊠

Concordia University, Jilin University, Mila - Quebec Al Institute, Engineering Research Center of Knowledge-Driven Human-Machine Intelligence, MOE, China

NeurIPS 2025

Background: Point Cloud Completion



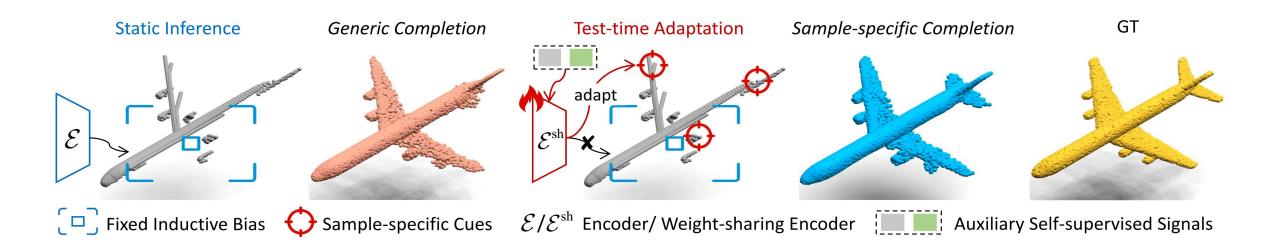
Goal: complete missing parts of a point cloud into a full 3D shape.

Motivation

What's the problem (and why do existing methods fail)?

Static Inference → **Generic Completion**

- Completion models frozen at deployment infer but never learn
- Relying on training priors CANNOT adapt to unseen geometry / noise
- Predicts plausible but non-specific shapes



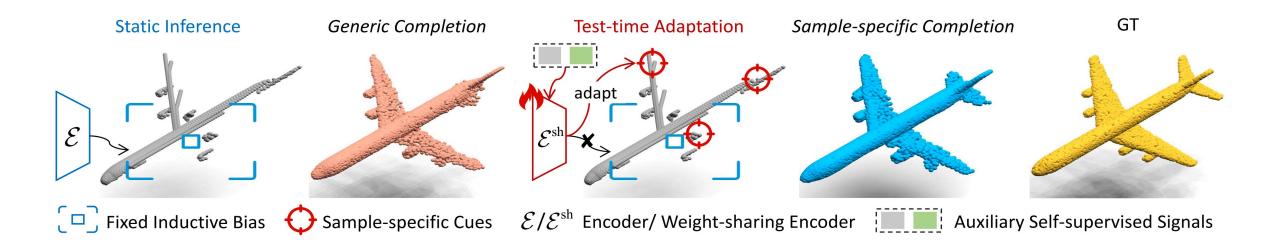
Limitation: (1) static inference and (2) training-learned inductive biases

Motivation

What's our solution?

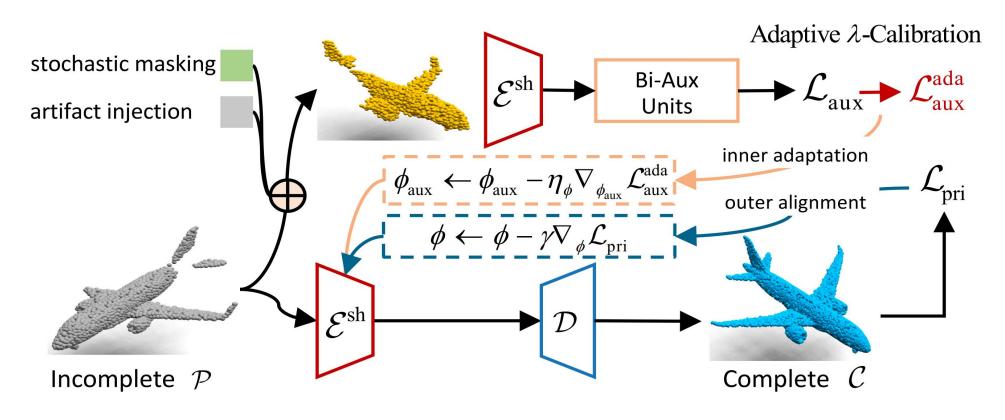
Adapt at Test Time!

Test-time adaptation (TTA) + meta-auxiliary learning → on-the-fly shared encoder adaptation



Core Challenge: from static inference → adaptive, self-improving completion

PointMAC: Meta-Learned Test-Time Training



(i) Inner Auxiliary Adaptation

(ii) Outer Primary Alignment

$$\phi_{\text{aux}}^{\text{smr}(t+1)} \leftarrow \phi_{\text{aux}}^{\text{smr}(t)} - \alpha \cdot \nabla_{\phi_{\text{aux}}^{\text{smr}}} \mathcal{L}_{\text{aux}}^{\text{smr}} \left(\widetilde{\mathcal{P}}^{(t)}, \mathcal{P}^{(t)}; \phi_{\text{pri}}^{\text{sh}(t)}, \phi_{\text{aux}}^{\text{sh}(t)}, \phi_{\text{aux}}^{\text{smr}(t)} \right),$$

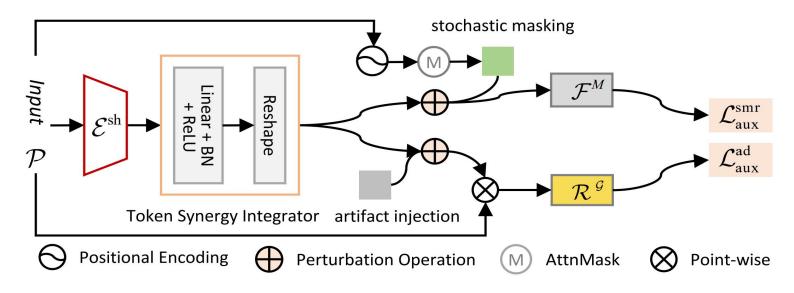
$$\phi_{\text{aux}}^{\text{ad}(t+1)} \leftarrow \phi_{\text{aux}}^{\text{ad}(t)} - \beta \cdot \nabla_{\phi_{\text{aux}}^{\text{ad}}} \mathcal{L}_{\text{aux}}^{\text{ad}} \left(\widehat{\mathcal{P}}^{(t)}, \mathcal{P}^{(t)}; \phi_{\text{pri}}^{\text{sh}(t)}, \phi_{\text{aux}}^{\text{sh}(t)}, \phi_{\text{aux}}^{\text{ad}(t)} \right),$$

$$\phi_{\text{pri}}^{\text{constant}} \leftarrow \phi_{\text{pri}}^{(t)} - \gamma \cdot \nabla_{\phi_{\text{pri}}^{(t)}} \left(\frac{1}{T} \sum_{i=1}^{T} \mathcal{L}_{\text{pri}} (\mathcal{C}^{(i)}, \mathcal{P}^{(i)}; \phi_{\text{pri}}^{(t)}) \right).$$

PointMAC: Meta Auxiliary Learning — Bi-Aux Units

Bi-Aux Units: Two Self-Supervised Adaptation Signals

Purpose: on-the-fly adaptation under structural & sensor incompleteness



(1) Stochastic Masked Reconstruction:

randomly mask regions → recover geometry → robust to missing parts

$$\mathcal{L}_{ ext{aux}}^{ ext{smr}} = \mathcal{L}_{ ext{CD}}(\widetilde{\mathcal{P}}, \mathcal{P}).$$

(2) Artifact Denoising:

add realistic noise \rightarrow restore clean structure \rightarrow suppress artifacts

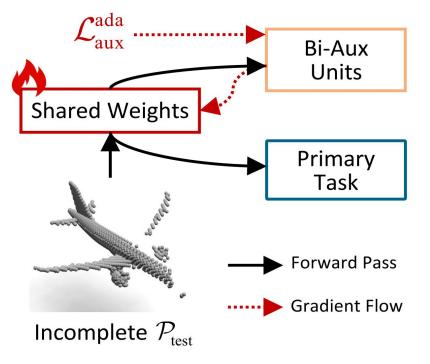
a noisy partial input
$$\overline{\mathcal{P}} = \mathcal{P} + \mathcal{N}(0, \sigma^2)$$

a clean and dense point cloud $\widehat{\mathcal{P}} = \Upsilon_{\varepsilon}^{\mathrm{ad}}(\overline{\mathcal{P}})$
 $\mathcal{L}_{\mathrm{aux}}^{\mathrm{ad}} = \mathcal{L}_{CD}(\widehat{\mathcal{P}}, \mathcal{P})$

PointMAC: Sample-Specific Test-Time Adaptation

return $\phi_{\mathrm{pri}}^{\mathrm{sh}(K)}$

Algorithm 1: Sample-Specific Test-Time Adaptation



```
Input: Trained parameters \phi = \{\phi_{\text{pri}}^{\text{sh}}, \phi_{\text{pri}}, \phi_{\text{aux}}^{\text{sh}}, \phi_{\text{aux}}^{\text{smr}}, \phi_{\text{aux}}^{\text{ad}}\}; test input \mathcal{P}_{\text{test}}; step size \eta; number of steps K

Output: Adapted encoder \phi_{\text{pri}}^{\text{sh}}

Apply stochastic masking and artifact injection using \mathcal{M} and \sigma via Aux^{\text{smr}} and Aux^{\text{ad}}; for t = 0 to K - 1 do /* Inner-loop adaptation */

\widetilde{\mathcal{P}} \leftarrow Aux^{\text{smr}} \text{Forward}(\mathcal{P}_{\text{test}}, \mathcal{M}; \phi_{\text{aux}}^{\text{smr}});
\widehat{\mathcal{P}} \leftarrow Aux^{\text{ad}} \text{Forward}(\mathcal{P}_{\text{test}}, \sigma; \phi_{\text{aux}}^{\text{ad}});
\mathcal{L}_{\text{aux}}^{\text{ada}} \leftarrow \lambda_{\text{smr}} \cdot \mathcal{L}_{\text{aux}}^{\text{smr}}(\widetilde{\mathcal{P}}, \mathcal{P}_{\text{test}}) + \lambda_{\text{ad}} \cdot \mathcal{L}_{\text{aux}}^{\text{ad}}(\widehat{\mathcal{P}}, \mathcal{P}_{\text{test}});
\phi_{\text{pri}}^{\text{sh}(t+1)} \leftarrow \phi_{\text{pri}}^{\text{sh}(t)} - \eta \cdot \mathcal{N}_{\phi_{\text{pri}}^{\text{sh}}} \mathcal{L}_{\text{aux}}^{\text{ada}};
/* Gradient descent on shared encoder */
```

Adaptive λ -Calibration. dynamically adjusts the auxiliary weights λ_{smr} and λ_{ad}

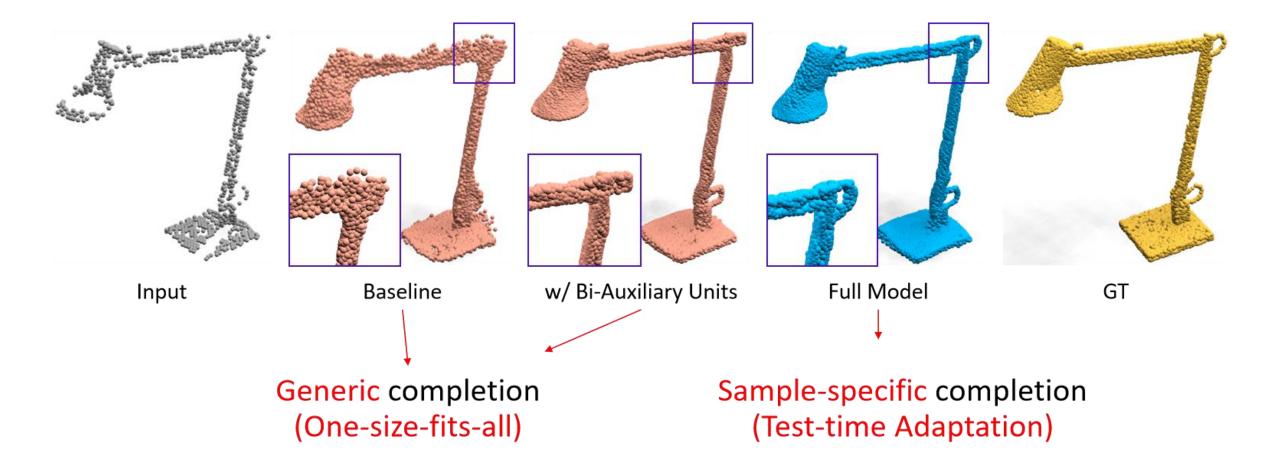
$$w_{\rm smr} = \left(\log(1 + \lambda_{\rm smr}^2) / \left[\log(1 + \lambda_{\rm smr}^2) + \log(1 + \lambda_{\rm ad}^2)\right]\right), \quad w_{\rm ad} = 1 - w_{\rm smr},$$
 (6)

$$\mathcal{L}_{\text{aux}}^{\text{ada}} = w_{\text{smr}} \cdot \mathcal{L}_{\text{aux}}^{\text{smr}} + w_{\text{ad}} \cdot \mathcal{L}_{\text{aux}}^{\text{ad}}. \tag{7}$$

Both the auxiliary branch parameters $\phi_{\rm aux} = \{\phi_{\rm aux}^{\rm smr}, \phi_{\rm aux}^{\rm ad}\}$ and the weighting coefficients $\lambda \in \{\lambda_{\rm smr}, \lambda_{\rm ad}\}$ are jointly updated via gradient descent:

$$\phi_{\text{aux}} \leftarrow \phi_{\text{aux}} - \eta_{\phi} \nabla_{\phi_{\text{aux}}} \mathcal{L}_{\text{aux}}^{\text{ada}}, \quad \lambda \leftarrow \lambda - \eta_{\lambda} \nabla_{\lambda} \mathcal{L}_{\text{aux}}^{\text{ada}}. \tag{8}$$

PointMAC: Ablation



PointMAC: Main Experiment Results

PointMAC is among the most thoroughly evaluated methods, covering <u>synthetic</u> (ShapeNet, PCN), <u>simulated</u> (MVP), and <u>real-world</u> (KITTI) benchmarks, and it achieves <u>new SOTA</u> performance.

Table 1: Synthetic experiments on the ShapeNet dataset.

$\text{CD-}\ell_2(\times 1000)$	Table	Chair	Plane	Car	Sofa	Bird House	Bag	Remote	Key board	Rocket	CD-S	CD-M	CD-H	CD-Avg	F1
FoldingNet [18]	2.53	2.81	1.43	1.98	2.48	4.71	2.79	1.44	1.24	1.48	2.67	2.66	4.05	3.12	0.082
PCN [4]	2.13	2.29	1.02	1.85	2.06	4.50	2.86	1.33	0.89	1.32	1.94	1.96	4.08	2.66	0.133
PoinTr [7]	0.81	0.95	0.44	0.91	0.79	1.86	0.93	0.53	0.38	0.57	0.58	0.88	1.79	1.09	0.464
SnowflakeNet [5]	0.75	0.84	0.42	0.88	0.72	1.74	0.81	0.48	0.36	0.51	0.52	0.80	1.62	0.98	0.477
SeedFormer [6]	0.72	0.81	0.40	0.89	0.71	115	171	= 1	173	-	0.50	0.77	1.49	0.92	0.472
ProxyFormer [8]	0.70	0.83	0.34	0.78	0.69	-	-	-	-	_	0.49	0.75	1.55	0.93	0.483
EINet [39]	0.66	0.79	0.41	0.84	0.69	1.49	0.73	0.42	0.33	0.49	0.49	0.75	1.46	0.90	0.432
CRA-PCN [19]	0.66	0.74	0.37	0.85	0.66	1.36	0.73	0.43	0.35	0.50	0.48	0.71	1.37	0.85	-
Ous	0.65	0.72	0.34	0.80	0.64	1.34	0.72	0.40	0.31	0.47	0.47	0.69	1.34	0.83	0.490

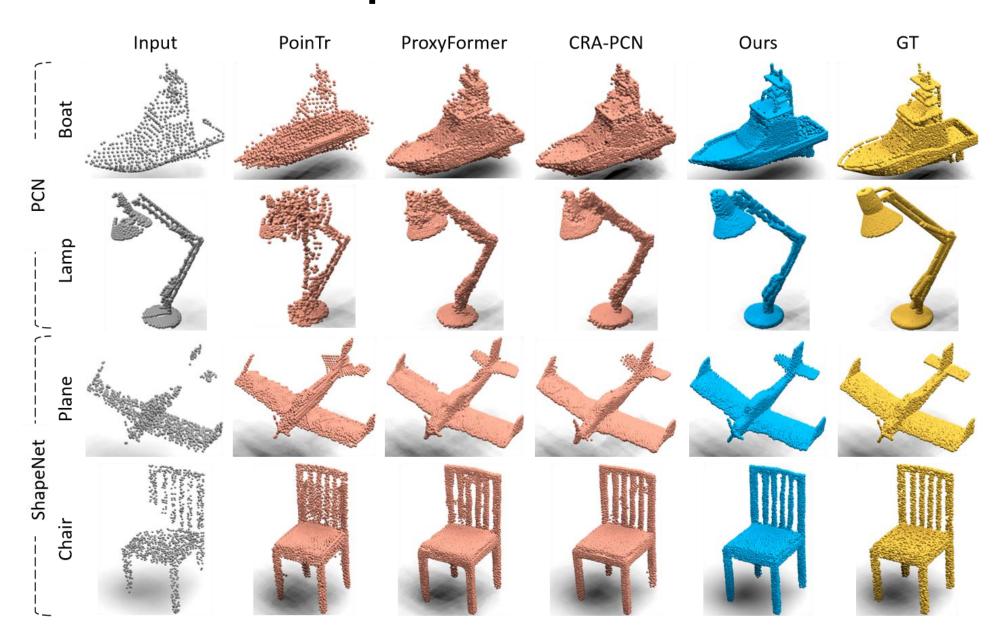
Table 2: Simulated experiments on the MVP dataset.

8	PCN [4]	TopNet [41]	MSN [42]	CDN [43]	ECG [44]	VRCNet [38]	CRA-PCN [19]	Ours
$CD-\ell_2\downarrow$	9.77	10.11	7.90	7.25	6.64	5.96	5.33	5.24
F 1 ↑	0.320	0.308	0.432	0.434	0.476	0.499	0.529	0.537

Table 3: Real-world experiments on the KiTTI dataset.

	PCN [4]	FoldingNet [18]	TopNet [41]	GRNet [45]	PoinTr [7]	SeedFormer [6]	ProxyFormer [8]	EINet [39]	Ours
Fidelity ↓	2.235	7.467	5.354	0.816	0.000	0.151	0.000	1.48	0.135
MMD ↓	1.366	0.537	0.636	0.568	0.526	0.516	0.508	0.512	0.477

PointMAC: Main Experiment Results



PointMAC: Conclusion

This work overcomes the limits of static inference and training priors through meta-learned test-time adaptation, enabling robust point cloud completion.

Project Page

- A *paradigm shift* from traditional static, one-size-fits-all inference.
- Robust to **domain shift** in real-world deployment.
- A *generalizable*, *plug-and-play* test-time adaptation framework for diverse 3D tasks.

Paper: https://arxiv.org/abs/2510.10365

