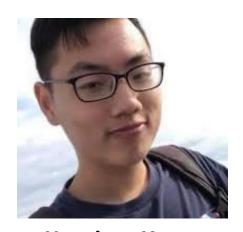


Accelerating Visual-Policy Learning through Parallel Differentiable Simulation

NeurIPS 2025 Spotlight

Presenter: Haoxiang You



Haoxiang You

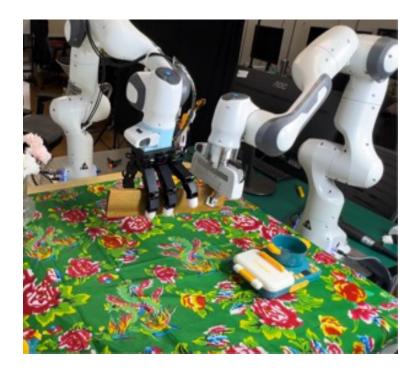
Yilang Liu

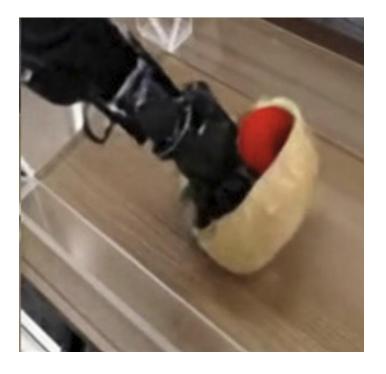
Ian Abraham

Website: https://haoxiangyou.github.io/Dva_website/

Visual Policy Learning

- Policy learning from raw pixels enable control in complex environments
- Visual policy learning method suffer from slow convergence and long training time





Yarats et. al.2021 Yuan et. al.2024 Hafner et. al.2025

Differentiable Simulation

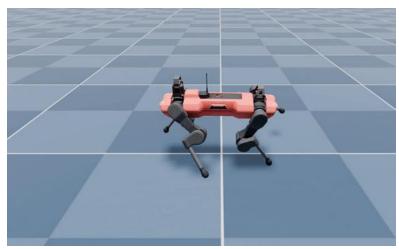
- Differentiable simulation enables **first-order** policy gradient estimation, improving training efficiency
- However, current approaches operate on low-dimensional state space

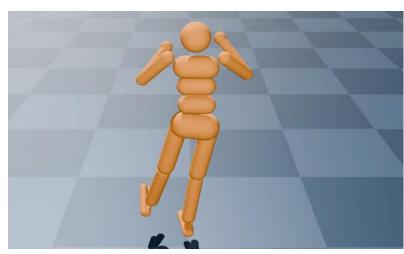


Xu et. al.2022 Song et. al.2024 Xing et. al.2025

Our Contribution

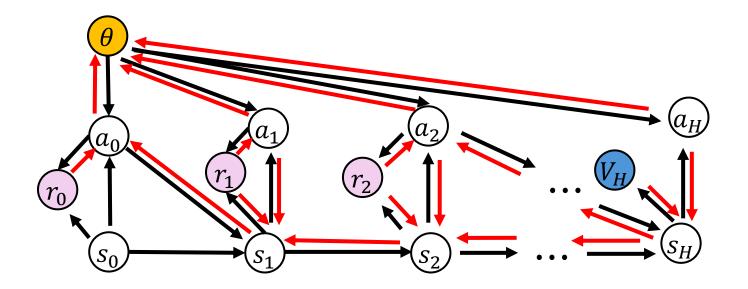
D.Va: A **first-order visual RL** method that learns policies directly from pixels, allowing visual-policy learning in **minutes-to-hours** on a personal laptop





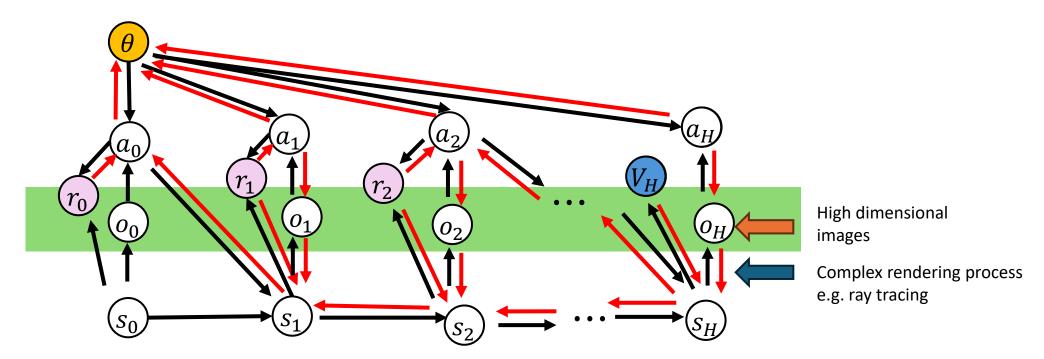
Background on First-order RL Method via Differentiable Simulation

- Construct a computation graph by rolling out trajectories
- Estimate policy gradients by backpropagating through the full trajectories
- Often truncate horizons to avoid gradient explosion and rely on value functions to predict future rewards



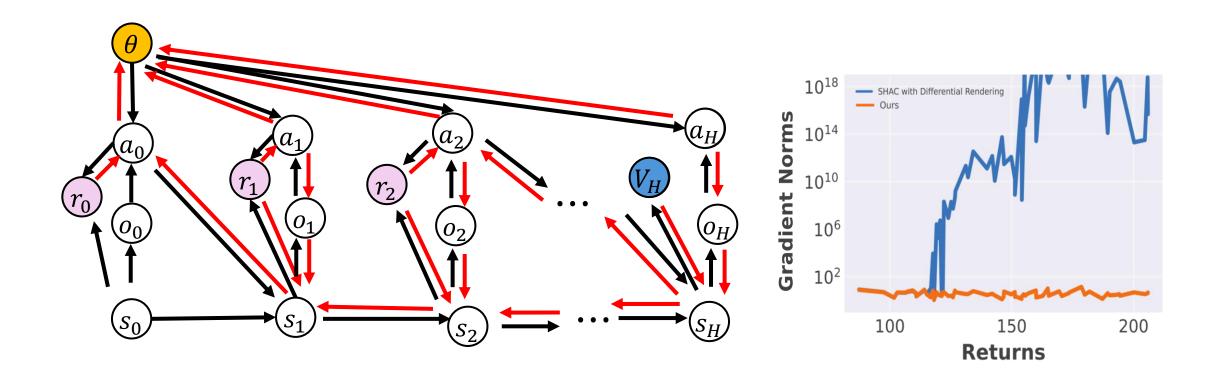
Challenges in Applying First-Order RL to Visual Policy Learning

- Jacobian involving high-dimensional images
 - Require large memories
 - Multiply big matrix is slow
- Most simulation does not support diff-rendering
- Gradient explosion



Our Method

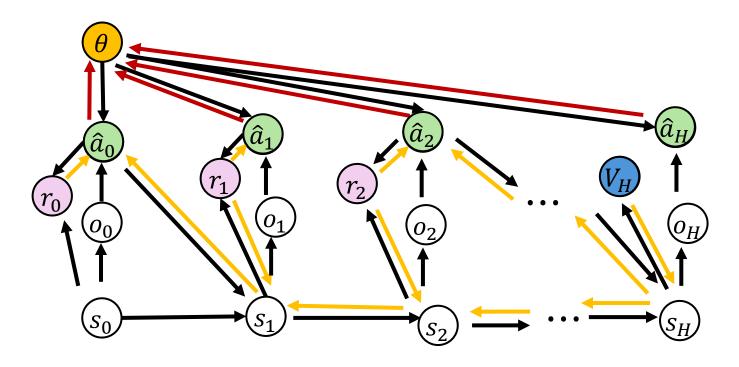
Our key is to stop gradients through high-dimensional visual inputs, yielding a quasi-policy-gradient estimator that remains **stable** and **informative** to train visual policy



Our Method

We also provide a **conceptual derivation** to deepen understanding of our quasi-policy gradient

By chain rule, our quasi-policy gradient can be re-factored into two parts: trajectory optimization and policy distillation.



Training Demo

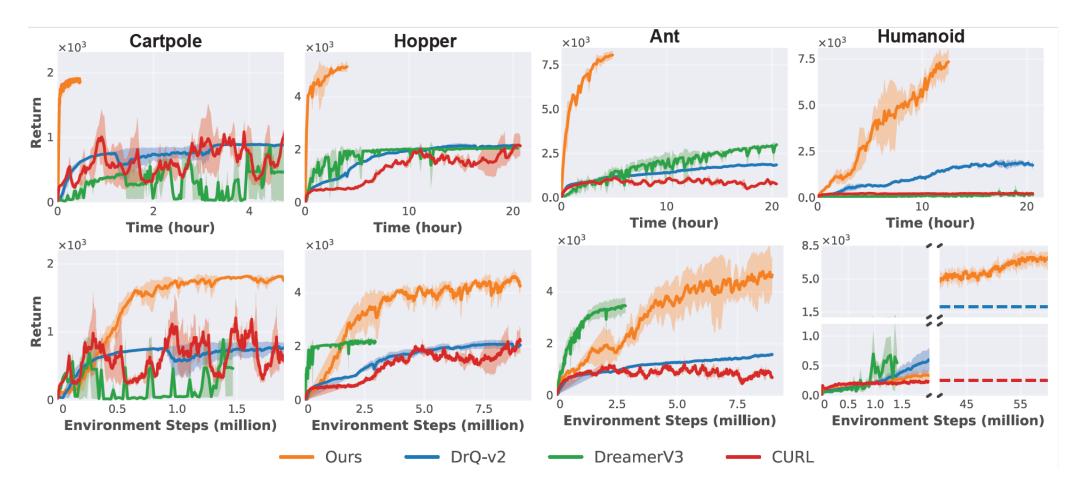
Leveraging differentiable simulation, our method learns a reasonable visual-loco policy in only **5 minutes**, and continues improving with more training.

Initial Policy 5 mins training 2 hours training

Results

We compare our method against a wide range of strong visual policy learning baselines

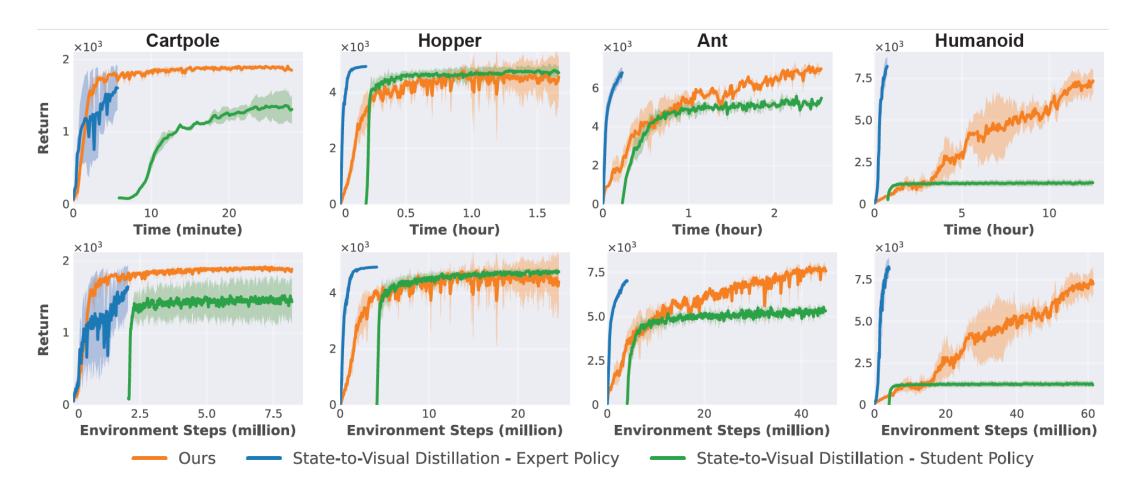
Results show that our method is not only fast, but also achieves higher rewards than all existing baselines



Results

We compare our method against a wide range of strong visual policy learning baselines

Results show that our method is not only fast, but also achieves higher rewards than all existing baselines



Results

We compare our method against a wide range of strong visual policy learning baselines

Results show that our method is not only fast, but also achieves higher rewards than all existing baselines

