

Cascaded Language Models for Cost-effective Human-Al Decision-Making

Claudio Fanconi

Mihaela van der Schaar

Challenge: Deploying large language models in high-stakes settings (e.g. healthcare, finance, education) requires balancing:

accuracy, cost, and reliability.

Problem:

- Larger models offer superior reasoning but incur high computational cost.
- Smaller models are cheaper but struggle on complex tasks.
- Current systems lack mechanisms to decide when to defer to stronger models or humans.

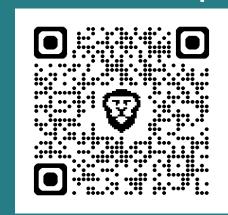
Goal: Build AI systems that make cost-aware and risk-sensitive decisions, learning when to trust themselves, when to escalate to stronger models, and when to abstain for human review.

Key Idea:

A cascaded human-AI decision **framework** that:

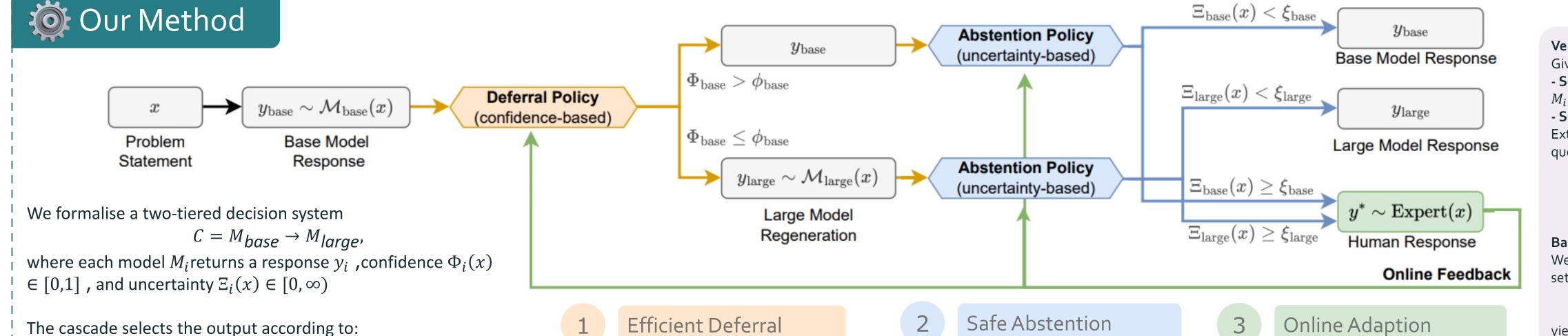
- Uses a base model for lowcomplexity queries.
- Defers to a more capable model when uncertainty is high.
- Abstains and seeks human input when confidence remains low.
- Learns online from feedback to improve over time.

Read the full paper: **Enjoyed this work? Let's connect:**



fanconic.github.com

caf83@cam.ac.uk in/ claudio-fanconi



 $M_{base}(x)$, $\Phi_{base}(x) > \phi_{base}$, $\Xi_{base}(x) < \xi_{base}$ $C(x) = \left\{ M_{large}(x), \Phi_{base}(x) \le \phi_{base}, \Xi_{large}(x) < \xi_{large} \right\}$ otherwise (abstain to human)

The **system risk** jointly optimises for accuracy, computational cost, and abstention:

 $R(C) = P(error \land \neg abstention) + \lambda_c \mathbb{E}[Cost] + \lambda_a P(abstention)$

Efficient Deferral

Only defer when $\Phi_{base}(x)$ is low to minimise unnecessary regeneration

 M_{large} used iff $\Phi_{base}(x) \leq \phi_{base}$

Safe Abstention

Escalate to human experts only when model uncertainty is high. Abstain iff $\Xi_i(x) > \xi_i$

Online Adaption

Update thresholds ϕ_{base} , ξ_{base} , ξ_{large} via stochastic gradient descent on R(C)incorporating feedback from human-labelled abstentions. $\theta_{t+1} = \theta_t - \eta \nabla_{\theta} R(C)$

Verification & Uncertainty Estimation

Verification Strategies

Given an input–response pair (x, y_i) from model M_i :

- Self-Verification (SV):

 M_i re-evaluates its own answer with a verification prompt. - Surrogate Token Probability (STP):

Extract next-token probability for YES/NO with verification

$$p_i(x) = \frac{M_i(YES \mid x, y_i)}{M_i(YES \mid x, y_i) + M_i(NO \mid x, y_i)}$$

Bayesian Calibration

We fit a Bayesian Logistic Regression on a small calibration set (=100 samples):

 $\Phi_i(x) = \mathbb{E}[correctness],$ $\Xi_i(x) = STD[correctness],$

yielding calibrated

confidence $\Phi_i(x)$

uncertainty $\Xi_i(x)$

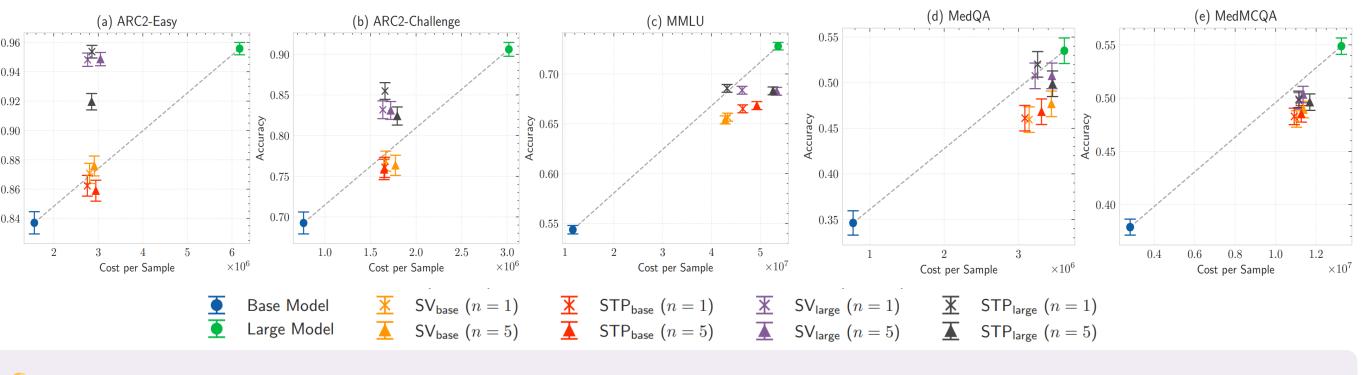
Deferral: if $\Phi_{base}(x) < \phi_{base}$ **Abstention:** if $\Xi_i(x) > \xi_i$

Purpose: This module converts model outputs into calibrated probabilities that the system uses to decide when to defer or abstain, making the cascade statistically grounded and cost-aware.

Results & Insights

Verification Experiment: Large-model evaluation improves cost-accuracy trade-offs

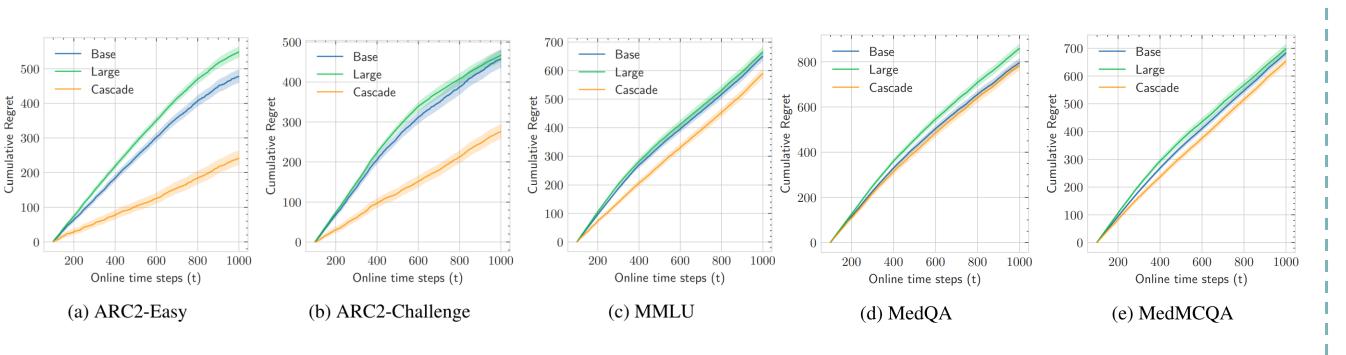
- When using large-on-small model verification the cascaded system achieves higher accuracy per unit cost.
- Surrogate Token Probability (STP) yields the best balance across datasets.



Verifying with a stronger model is cheaper than regenerating responses and yields better calibration.

Online learning Experiment: Online learning reduces cumulative regret

- Introduce a soft-gate (sigmoid) for the decision thresholds, so the optimisation becomes differentiable.
- Updating thresholds ϕ_{base} , ξ_{base} , ξ_{large} via SGD on R(C) improves decision efficiency over time.



The cascade learns when to defer or abstain, achieving lower long-term cost-risk.