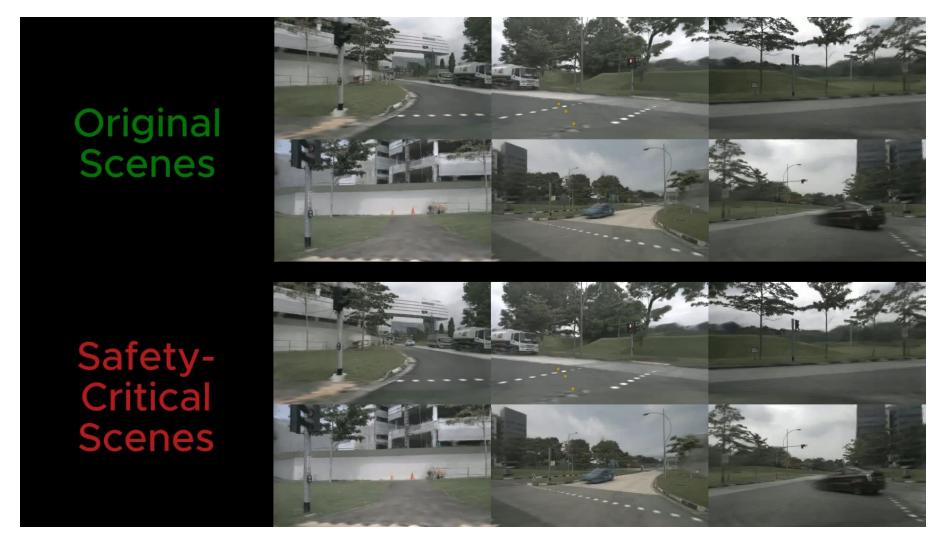
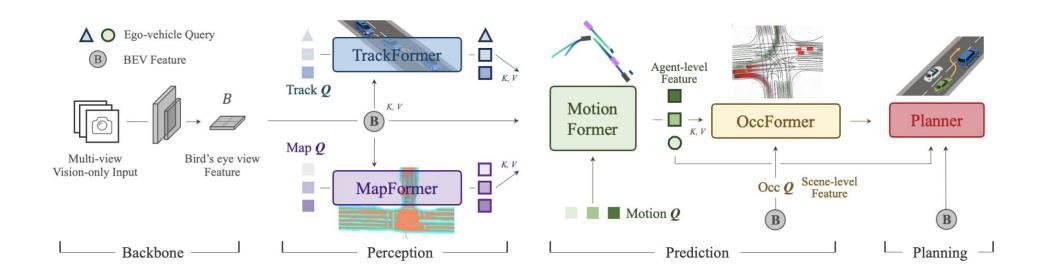
Model-Based Policy Adaptation for Closed-Loop End-to-End Autonomous Driving

Haohong Lin¹, Yunzhi Zhang², Wenhao Ding³, Jiajun Wu², Ding Zhao¹

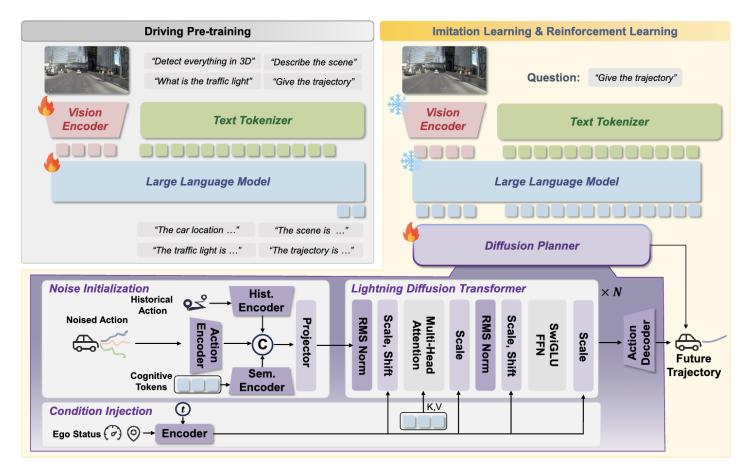
¹CMU, ²Stanford, ³NVIDIA


NeurIPS 2025



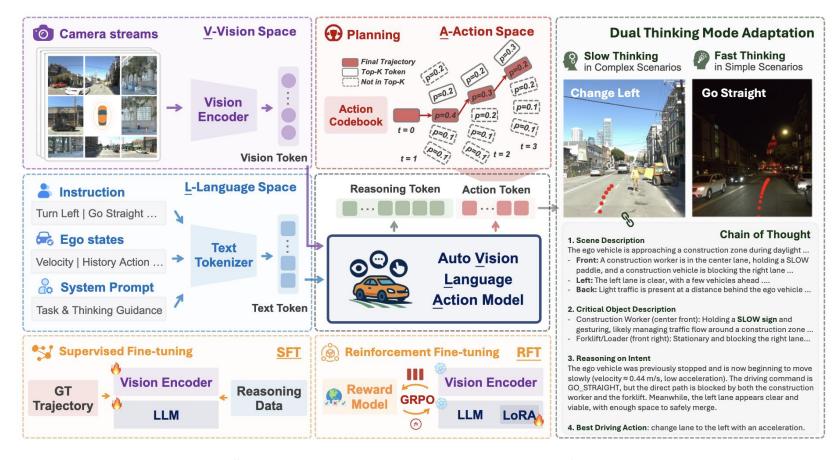
Teaser: Closed-Loop Evaluation of E2E Driving

Background: End-to-End Autonomous Driving


• Modularized, end-to-end joint training pipeline

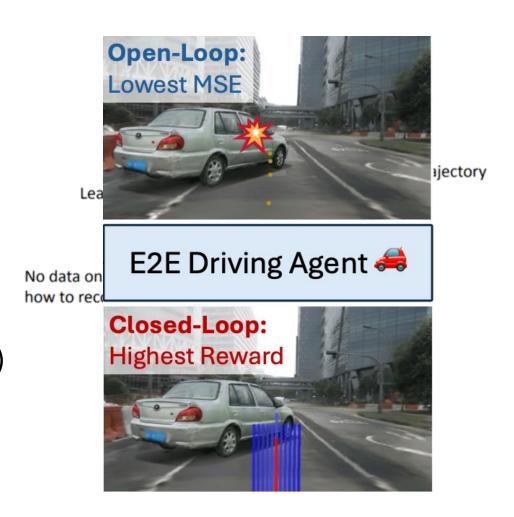
Hu, Yihan, et al. "Planning-oriented autonomous driving." CVPR 2023.

Background: Foundation Models in Self-Driving


- CoT Data curation
- VLM backbone pretraining
- Diffusion head for trajectory decoding
- RL Finetuning

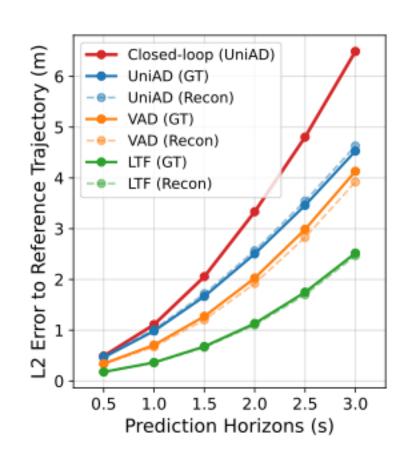
Li, Yongkang, et al. "ReCogDrive: A Reinforced Cognitive Framework for End-to-End Autonomous Driving." *ArXiv* 2025

Background: Foundation Models in Self-Driving


- CoT Data curation
- VLM backbone pretraining
- RL Finetuning

Zhou, Zewei, et al. "AutoVLA: A Vision-Language-Action Model for End-to-End Autonomous Driving with Adaptive Reasoning and Reinforcement Fine-Tuning." *ArXiv* 2025

Motivation


- Missing Evaluation in Closed-Loop Rollout
 - Open-Loop Evaluation looks good
 - Compounding error leads to some failure mode
- Challenges in the Safety-Critical Behaviors
 - Imitation Learning: lower empirical risks (L2 error)
 - Online policy: reward maximization
 - Objective Mismatch!

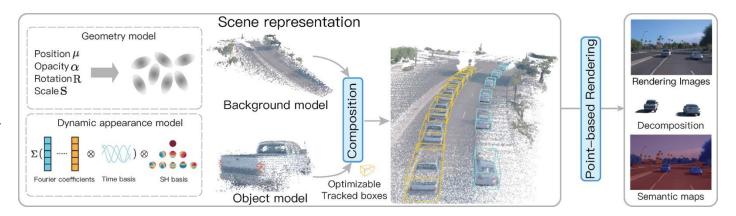
Motivation: Where does the Gap Come from?

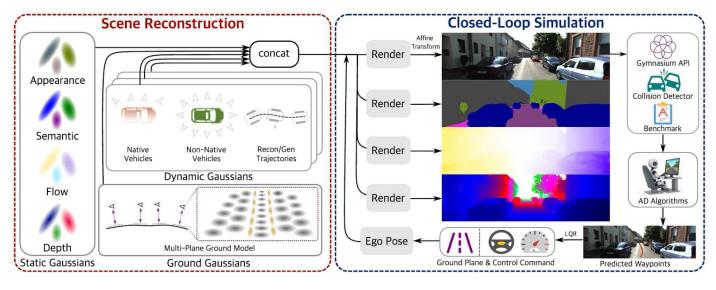

Hypothesis of Error Sources:

- Sensor Sim. Error
- Compounding Error
- Preliminary experiments: teacher-forcing rollout
- Observation:
 - Sensor simulation does not cause too much error...
 - Compounding error is more significant!

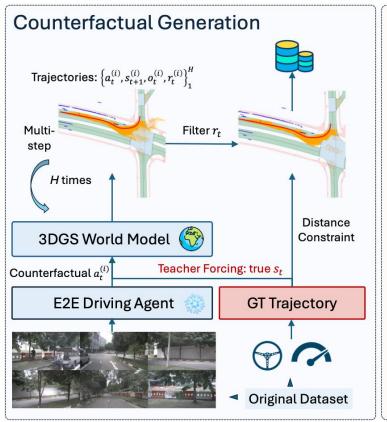
Related Works

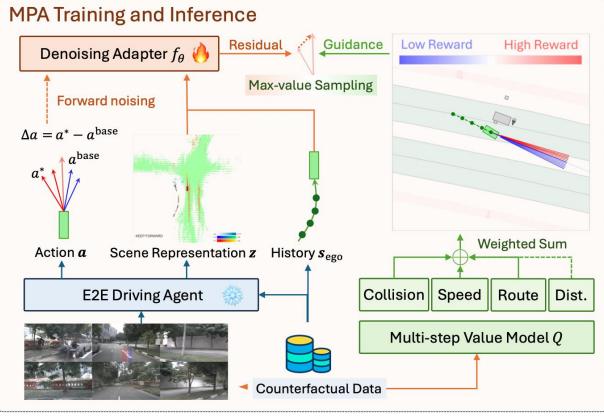
End-to-End Autonomous Driving


Preliminary: 3D Gaussian Splatting

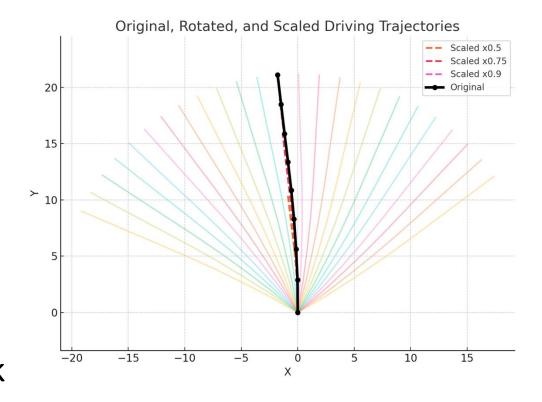

- Pros: 3DGS is faster at inference time compared to NeRF! Also it is parameter efficient
- Cons: (Both 3DGS and NeRF) cannot generalize to unseen scenes without any camera views

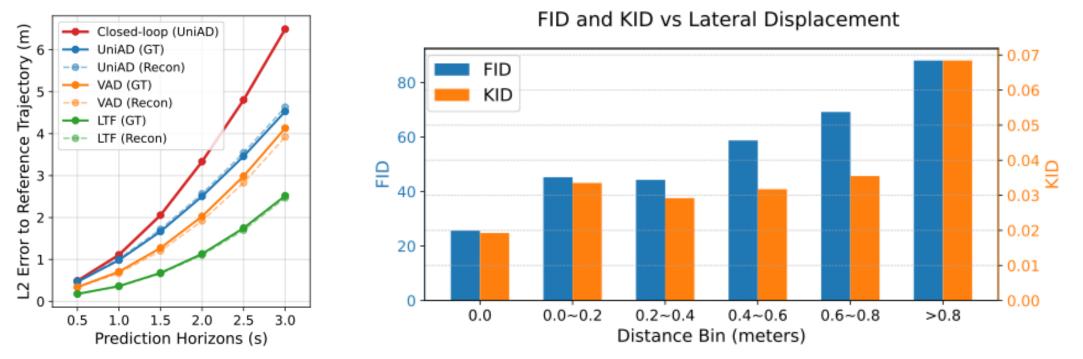
Preliminary: 3D Gaussian Splatting for Urban Scenes


- StreetGaussians
 - Take LiDAR Inputs
 - Decompose background / objects
- HUGSIM
 - Fine-grained structure: road surface, static, dynamic objects, etc.
 - No LiDAR dependencies
- [1] Yan, Yunzhi, et al. "Street gaussians: Modeling dynamic urban scenes with gaussian splatting." *ECCV 2024*.
- [2] Zhou, Hongyu, et al. "Hugsim: A real-time, photo-realistic and closed-loop simulator for autonomous driving." *arXiv* 2024.

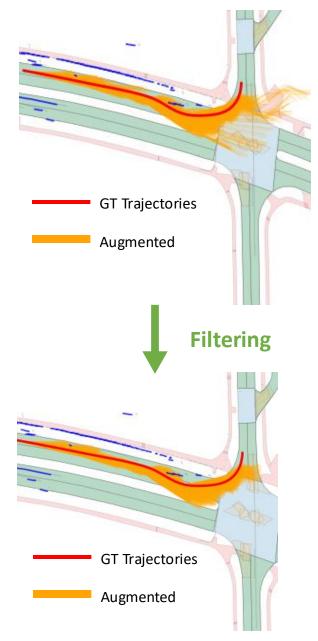


Overview of the Proposed Method


Counterfactual Data Generation | Policy Adapter | Value Function


Counterfactual Data Synthesis

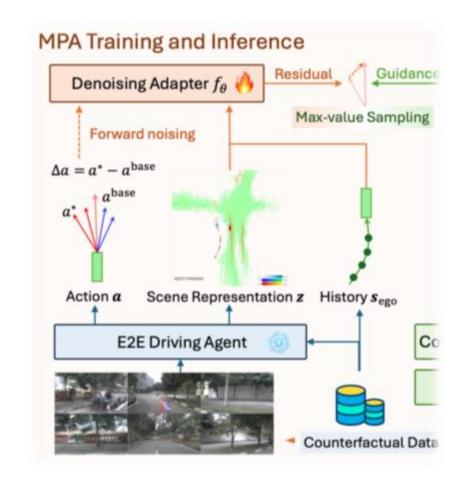
- Randomly transform the predicted trajectories with:
 - Warping
 - Rotation
 - Noising
- Rollout and accumulate the feedback


Properties of 3DGS?

- What is the quality of the rendered results?
 - a) Impact to the policy; b) Inception Distance w.r.t. Lateral Displacement

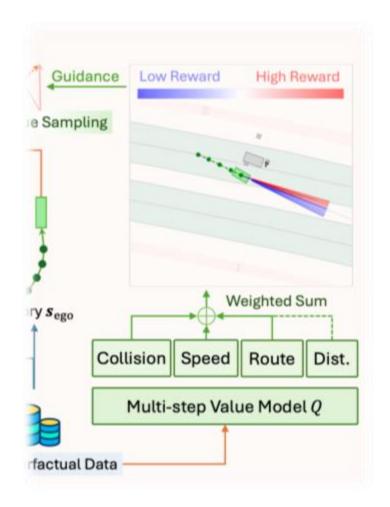
Counterfactual Data Synthesis

- How to guarantee the realism?
- Constraining the distance
 - Between the current poses with the demonstration data
 - If exceeds, reject these samples



DDIM Sampler for Policy Adaptation

Process of DDIM Sampler


$$\mathbb{E}_{\Delta a^{(0)},k,\epsilon} \ \min_i \left\| f_{ heta}(\Delta a^{(k)},k,z,m{s}_{ ext{ego}},a^{ ext{base}})[i] - \Delta a^{(0)}
ight\|_2^2,$$
 where $\Delta a^{(k)} = \sqrt{ar{lpha}_k}\Delta a^{(0)} + \sqrt{1-ar{lpha}_k}\epsilon$, with $\epsilon \sim \mathcal{N}(0,\mathbf{I})$.

$$a^{\text{adapt}}[i] = a^{\text{base}} + \Delta a^{(0)}[i], \ \forall i \in [N].$$

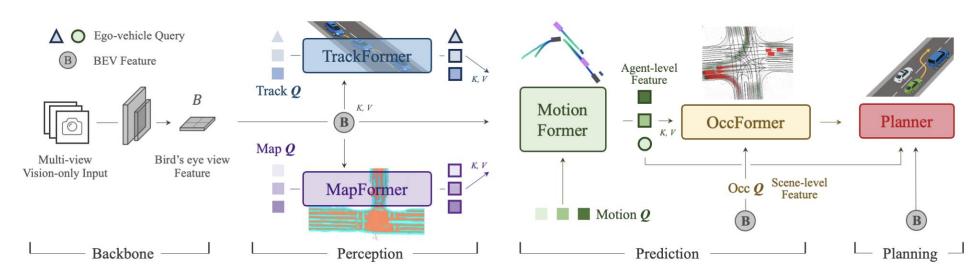
Multi-Principled Q-Value Heads

- Reward Shaping
 - (Longitude) Route progression
 - (Lateral) Driveable area compliance
 - (Safety) Collision penalty
 - (Safety) Off-road penalty
 - (Comfort) Overspeed penalty
- Mult-Head Truncated Q Value
 - $\min_{\theta} E[|Q_{\theta}(s_t, a_t) \sum_{k} r(s_{t+k}, a_{t+k})|^2]$

- Setting: nuScenes + HUGSIM closed-loop evaluation
 - Training on ~290 normal scenes with counterfactual generation (Singapore)
 - Testing on 70 unseen, normal scenes (Boston)
 - Testing on 10 seen, safety-critical scenes (Singapore)

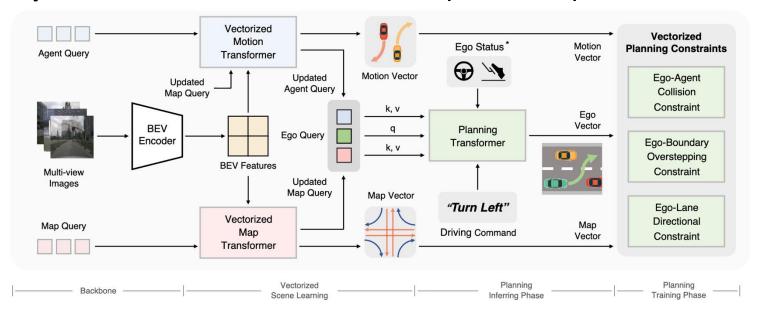
Singapore (Normal)

Boston (Normal)

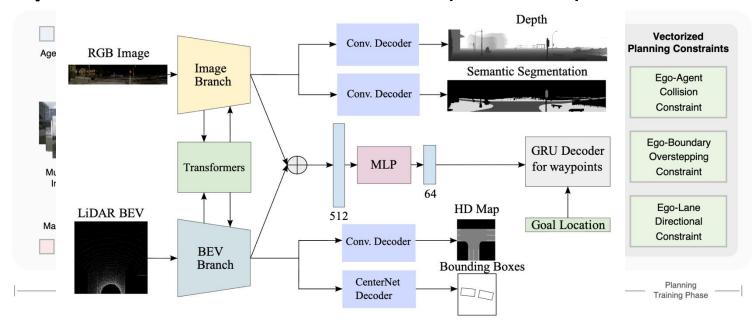

- Metrics [1, 2]
 - Route Completion (RC)
 - Collision related: Non-Collision (NC), Time-to-Collision (TTC)
 - Driving style: Comfort (COM), Driveable Area Compliance (DAC)
 - HDScore

$$\begin{split} \text{HDScore} &= \text{RC} \times \frac{1}{T} \sum_{t=0}^{T} \Big\{ \prod_{m \in \{\text{NC, DAC}\}} \text{score}_m \times \\ &\frac{\sum_{m \in \{\text{TTC, COM}\}} \text{weight}_m \times \text{score}_m}{\sum_{m \in \{\text{TTC,COM}\}} \text{weight}_m} \Big\}_t. \end{split}$$

^[1] Zhou, Hongyu, et al. "Hugsim: A real-time, photo-realistic and closed-loop simulator for autonomous driving." arXiv 2024.


^[2] Dauner, Daniel, et al. "Navsim: Data-driven non-reactive autonomous vehicle simulation and benchmarking." NeurIPS 2024

- Baselines in Comparison
 - Pretrained Policies: UniAD / VAD / LTF
 - Trained w/ Counterfactual data: AD-MLP / BC-Safe / Diffusion


Hu, Yihan, et al. "Planning-oriented autonomous driving." CVPR 2023.

- Baselines in Comparison
 - Pretrained Policies: UniAD / VAD / LTF
 - Trained w/ Counterfactual data: AD-MLP / BC-Safe / Diffusion

Jiang, Bo, et al. "Vad: Vectorized scene representation for efficient autonomous driving." CVPR 2023

- Baselines in Comparison
 - Pretrained Policies: UniAD / VAD / LTF
 - Trained w/ Counterfactual data: AD-MLP / BC-Safe / Diffusion

Chitta, Kashyap, et al. "Transfuser: Imitation with transformer-based sensor fusion for autonomous driving." *TPAMI 2022*

Main Results

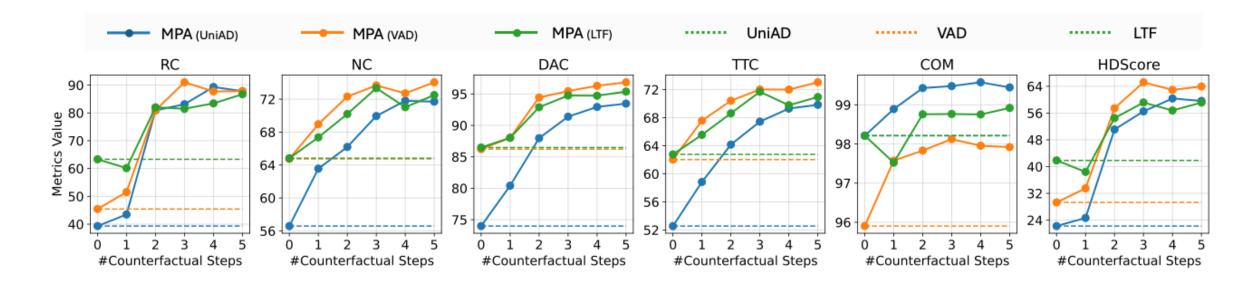
• Better closed-loop driving performance for in-domain scenarios!

Model	Ego Status	Camera	Curation	RC	NC	DAC	TTC	COM	HDScore
UniAD	✓	✓	Х	39.4	56.9	75.1	52.1	98.7	19.4
VAD	\checkmark	\checkmark	×	50.1	68.4	87.2	66.1	90.2	31.9
LTF	\checkmark	\checkmark	×	65.2	71.3	92.1	67.6	<u>98.4</u>	46.7
AD-MLP	✓	X	√	13.4	80.2	86.2	79.4	90.1	6.5
BC-Safe	\checkmark	\checkmark	\checkmark	57.0	59.8	87.9	55.2	89.4	33.6
Diffusion	\checkmark	\checkmark	\checkmark	71.8	67.4	88.1	64.5	91.5	45.1
MPA (UniAD)	\checkmark	\checkmark	\checkmark	93.6	<u>76.4</u>	<u>92.8</u>	72.8	91.8	<u>66.4</u>
MPA (VAD)	\checkmark	\checkmark	\checkmark	94.9	75.4	93.6	<u>72.5</u>	92.8	67.0
MPA (LTF)	✓	✓	\checkmark	93.1	70.8	90.9	67.9	94.9	60.0

Main Results

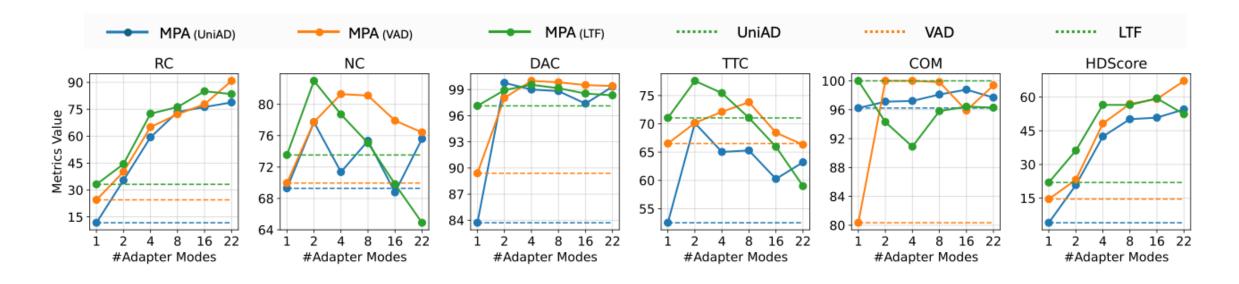
• Better performance in the OOD Scenarios

	Unseen Nominal Scenes						Safety-Critical Scenes						
Model	RC	NC	DAC	TTC	COM	HDScore	RC	NC	DAC	TTC	COM	HDScore	
UniAD	39.3	56.6	74.0	52.6	98.2	22.2	11.4	76.2	82.1	57.8	95.9	4.5	
VAD	45.4	64.8	86.2	62.0	95.9	29.3	25.4	77.0	88.3	73.2	88.4	16.0	
LTF	63.3	64.8	86.5	62.8	98.2	41.9	35.1	80.9	96.8	<u>78.1</u>	100.0	24.2	
AD-MLP	7.6	71.6	82.2	69.8	92.3	3.3	4.9	93.5	96.2	93.4	85.9	4.3	
BC-Safe	59.2	59.8	81.2	56.3	95.9	34.6	20.2	80.1	91.7	67.3	86.7	13.5	
Diffusion	57.9	62.1	83.5	58.3	96.2	35.1	20.9	<u>84.3</u>	92.3	72.4	86.3	13.1	
MPA (UniAD)	93.7	69.5	92.9	66.6	97.6	60.9	95.1	76.8	98.9	74.2	97.7	<u>70.4</u>	
MPA (VAD)	90.9	<u>71.0</u>	94.4	<u>68.8</u>	97.7	61.2	96.6	79.8	99.0	77.3	97.7	74.7	
MPA (LTF)	91.8	68.3	91.0	66.5	96.9	57.0	87.3	72.0	94.0	66.9	<u>97.8</u>	56.3	

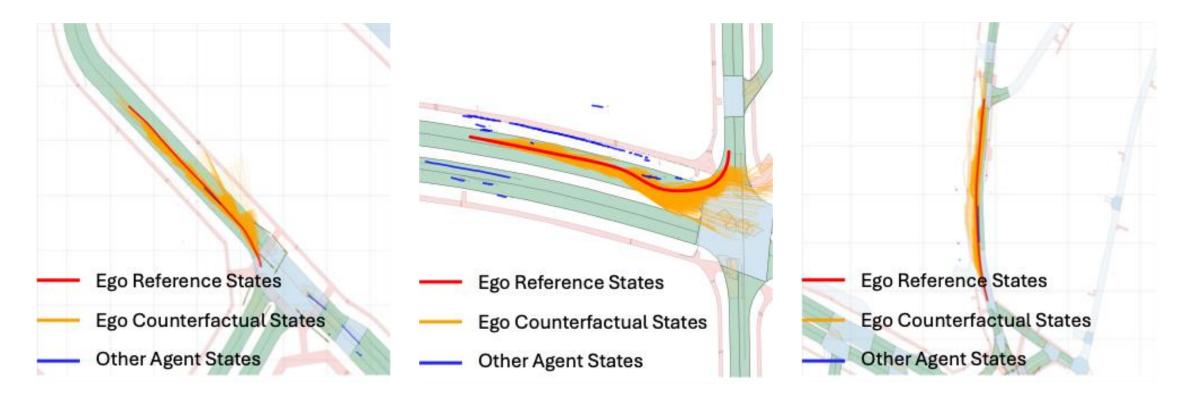

Ablation Studies

• Quantitative Studies of the Value Heads:

ID	$Q_{ m route}$	$Q_{ m dist}$	$Q_{ m collision}$	$Q_{ m speed}$	Adapter	RC	NC	DAC	TTC	COM	HDScore
1		✓	\checkmark	\checkmark		6.9	81.2	<u>95.1</u>	81.0	100	5.1
2	✓		\checkmark	\checkmark		83.9	57.0	81.0	53.6	99.4	43.2
3	✓	\checkmark		\checkmark		89.2	70.8	95.6	68.6	99.4	60.8
4	✓	\checkmark	\checkmark			90.4	68.9	91.8	65.4	99.4	56.6
5	✓	\checkmark	\checkmark	\checkmark		<u>91.1</u>	<u>71.5</u>	94.1	69.4	99.4	60.9
6	✓	\checkmark	\checkmark	\checkmark	\checkmark	93.7	69.5	92.9	66.6	97.6	60.9
ID	$Q_{ m route}$	$Q_{ m dist}$	$Q_{ m collision}$	$Q_{ m speed}$	Adapter	RC	NC	DAC	TTC	COM	HDScore
1		\checkmark	\checkmark	\checkmark		4.6	86.0	98.3	79.3	90.1	3.6
2	✓		\checkmark	\checkmark		65.1	65.6	85.7	53.8	86.5	39.5
3	✓	\checkmark		\checkmark		57.7	82.4	99.0	69.6	84.6	39.2
4	✓	\checkmark	\checkmark			<u>79.3</u>	<u>82.9</u>	98.5	68.0	93.9	50.1
5	✓	\checkmark	\checkmark	\checkmark		75.6	81.2	98.8	<u>78.6</u>	99.7	<u>55.3</u>
6	✓	\checkmark	\checkmark	\checkmark	\checkmark	95.1	76.8	<u>98.9</u>	74.2	<u>97.7</u>	70.4


Ablation Studies --- Counterfactual Rollout Steps

- Impact of Counterfactual Rollout Steps
 - Longer rollout steps give better future awareness in planning


Ablation Studies --- Capacity of Policy Adapter

- Impact of #adapter modes of the diffusion head
 - More modes bring better diversity in action proposal!

Qualitative Results on the Counterfactual Dataset

Counterfactual dataset has better coverage in driving behavior!

Qualitative Results

Qualitative Results (Safety-Critical Scenes)

Takeaways

- Mitigate the performance gap between open- and closed-loop evaluation:
 - Counterfactual Data Generation
 - Diffusion policy adapter for diverse action proposal
 - Inference-time Scaling to search the optimal actions
- Next step:
 - Synthesize safety-critical scenes at scale
 - Sim-to-real / real-to-sim gap?

Thanks for Listening!

Haohong Lin | CMU

Website: https://hhlin.info

Email: haohongl@andrew.cmu.edu

Poster session: Wed, Dec 3rd, 4:30pm-7:30pm (PST)

Project Page