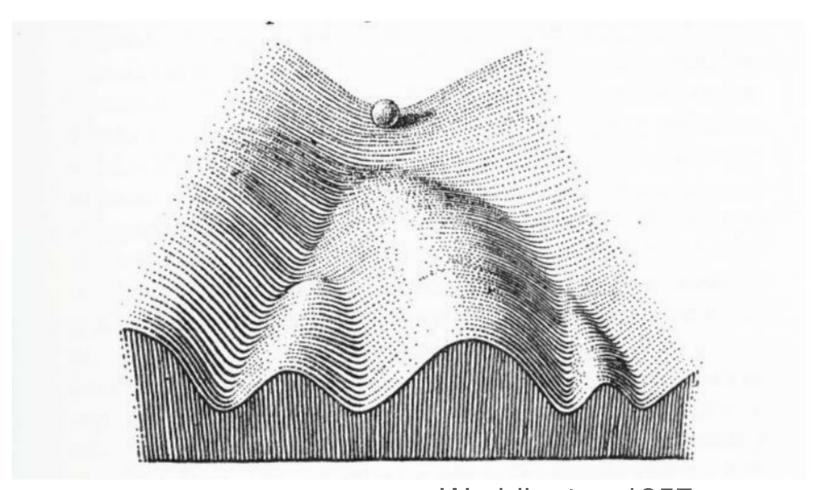
Finding separatrices of dynamical flows with Deep Koopman Eigenfunctions

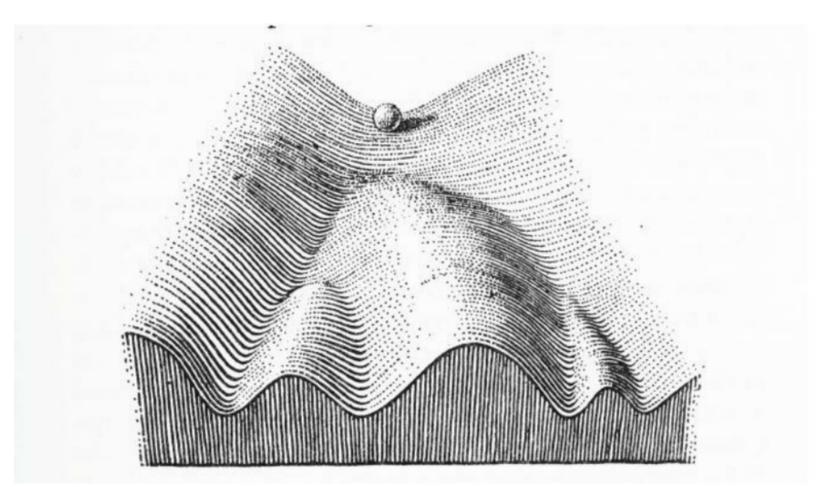
Kabir V. Dabholkar and Omri Barak

Cell biology



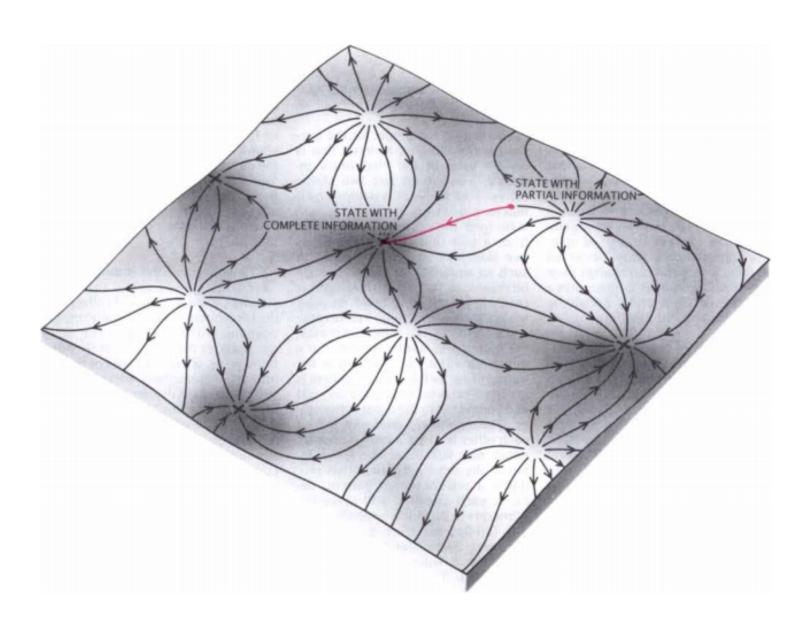
Waddington 1957

Cell biology



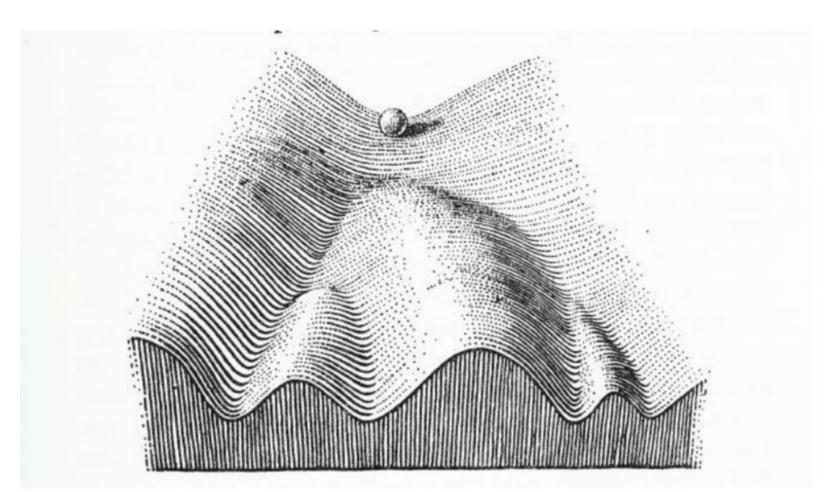
Waddington 1957

Neuroscience



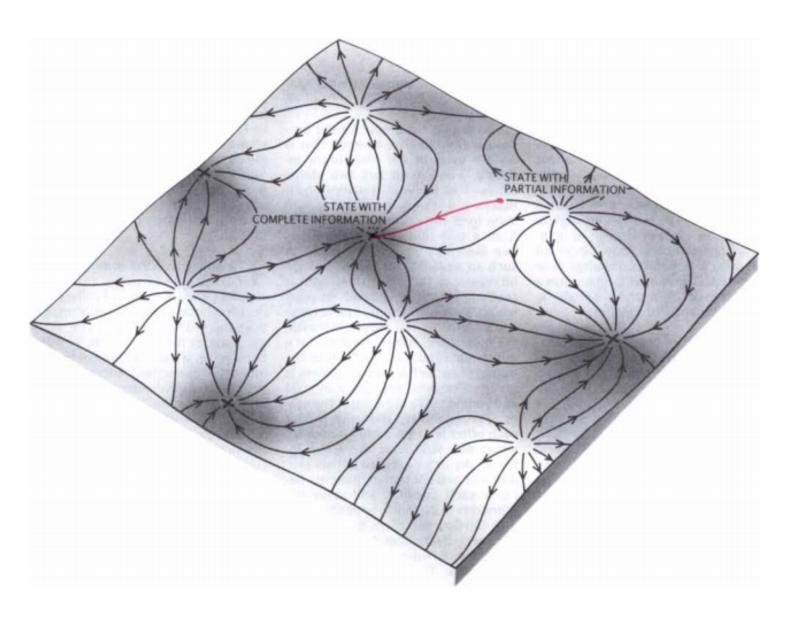
Tank and Hopfield 1987

Cell biology



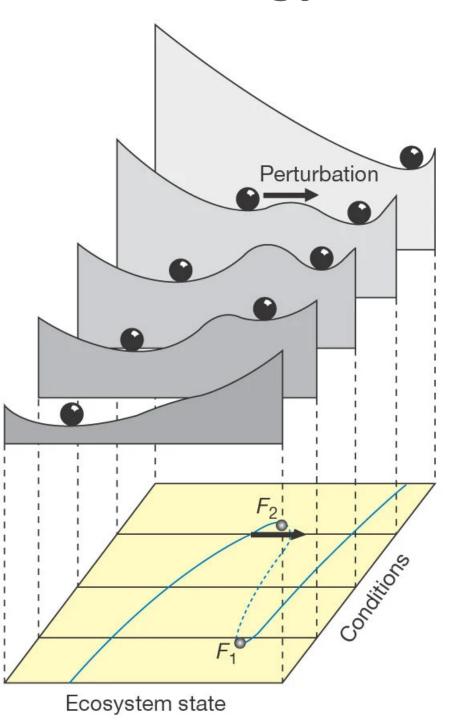
Waddington 1957

Neuroscience



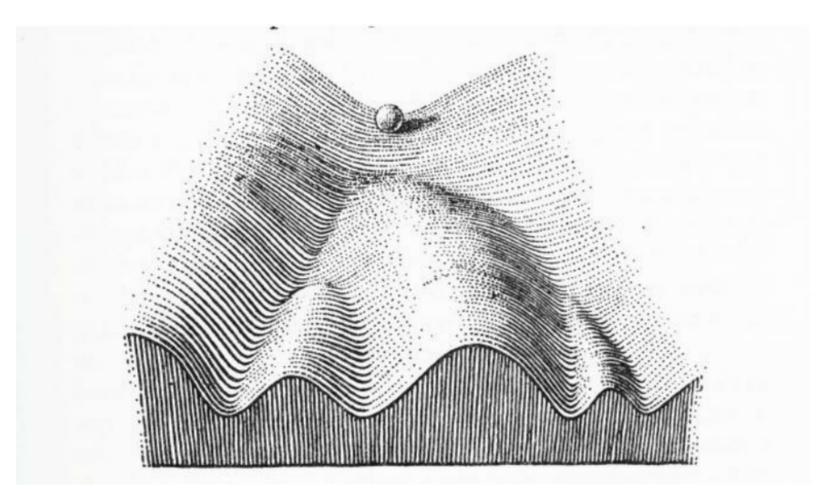
Tank and Hopfield 1987

Ecology



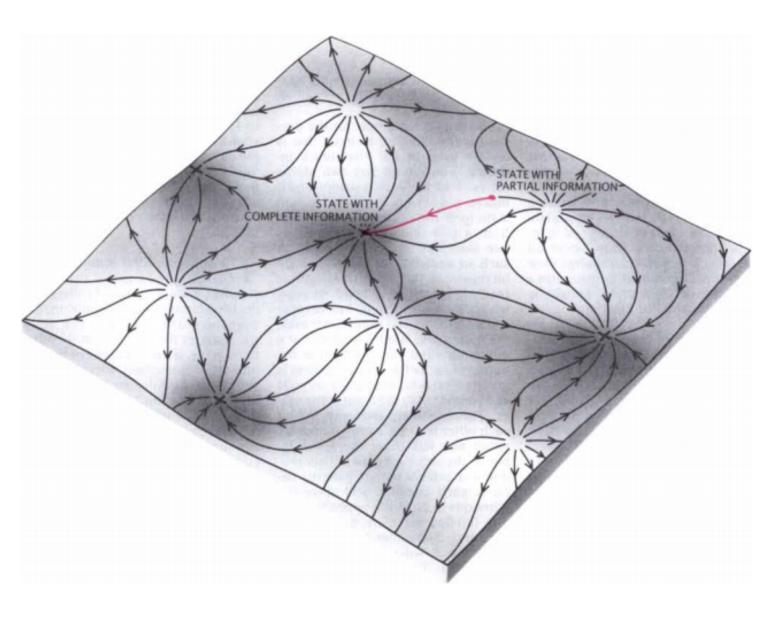
Scheffer et al 2001

Cell biology



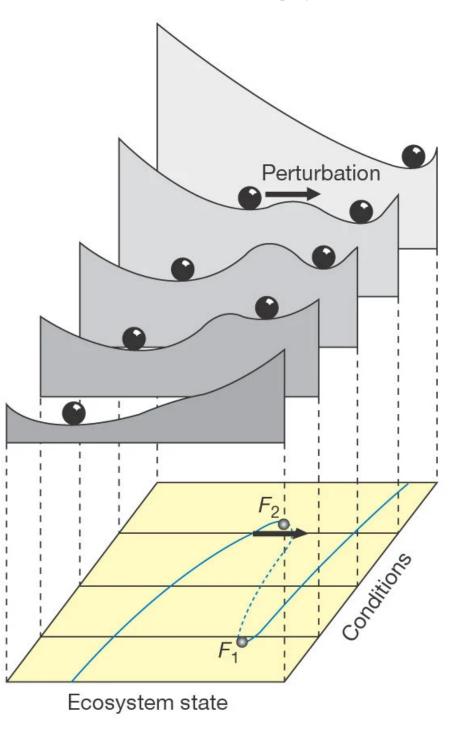
Waddington 1957

Neuroscience



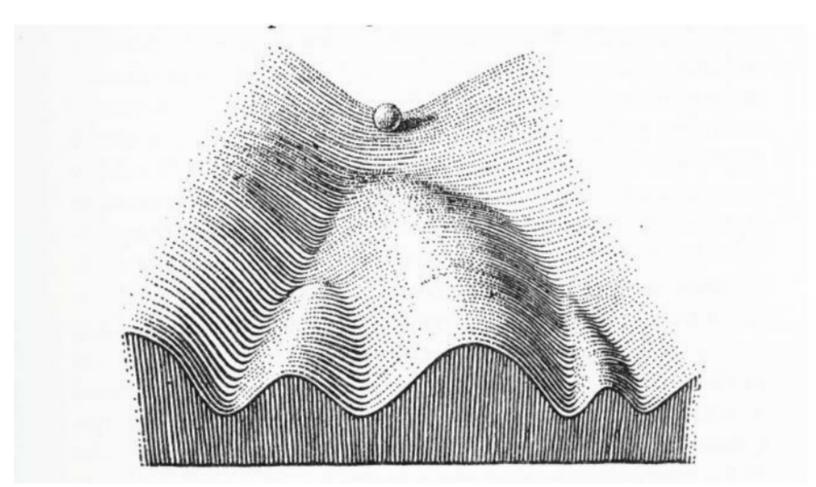
Tank and Hopfield 1987

Ecology



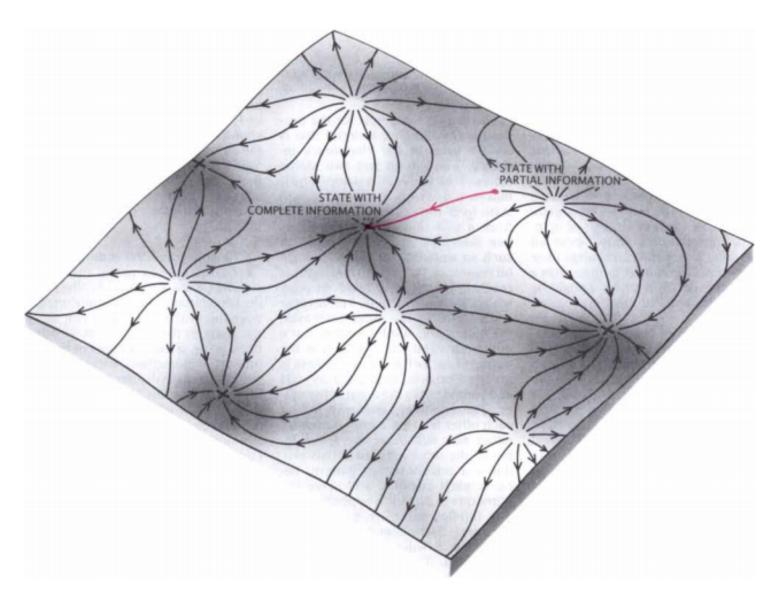
Scheffer et al 2001

Cell biology



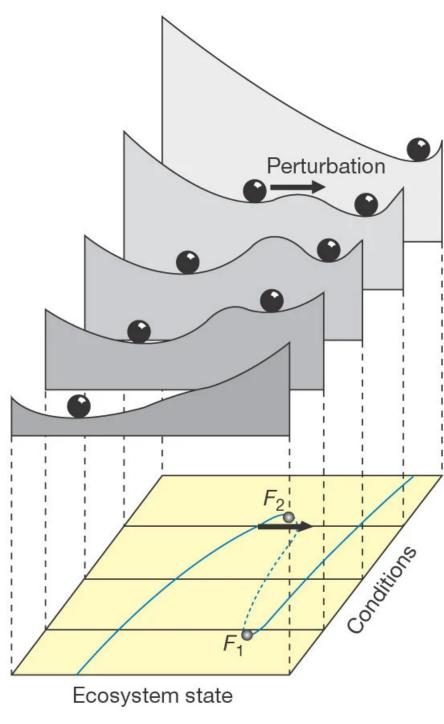
Waddington 1957

Neuroscience

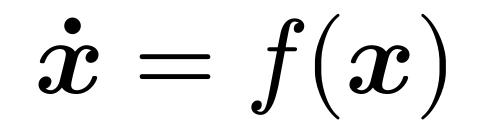


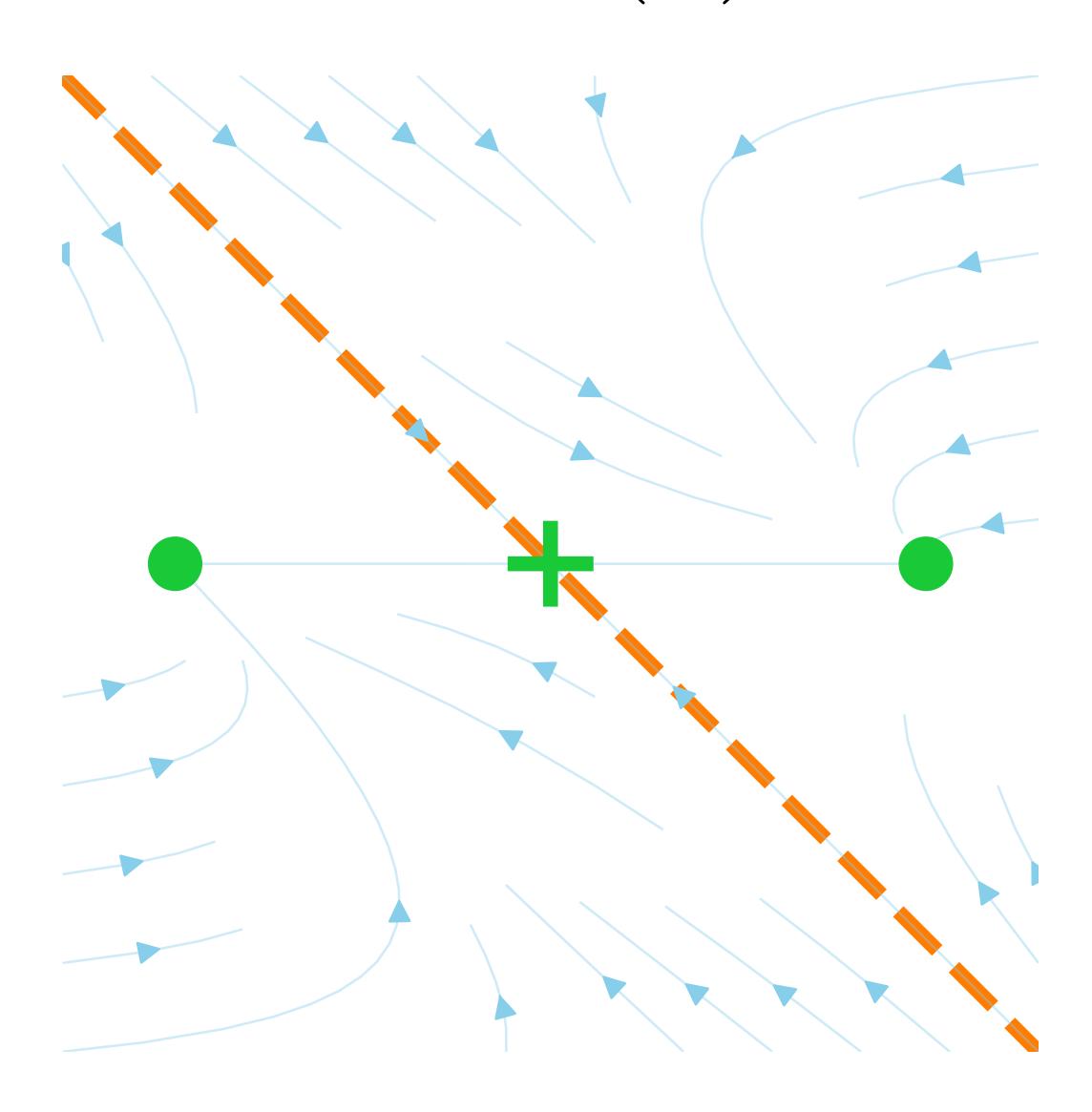
Tank and Hopfield 1987

Ecology

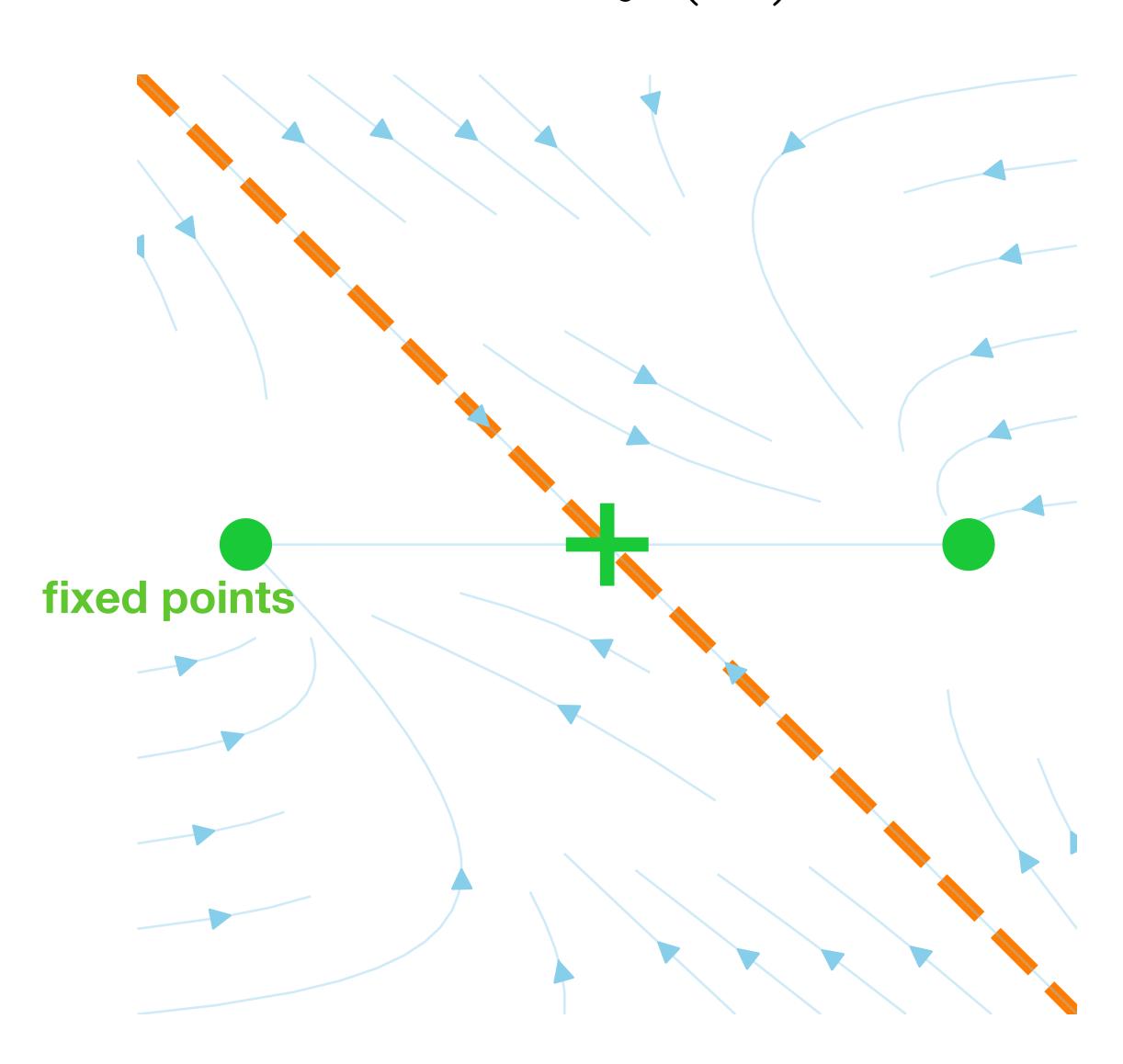


Scheffer et al 2001

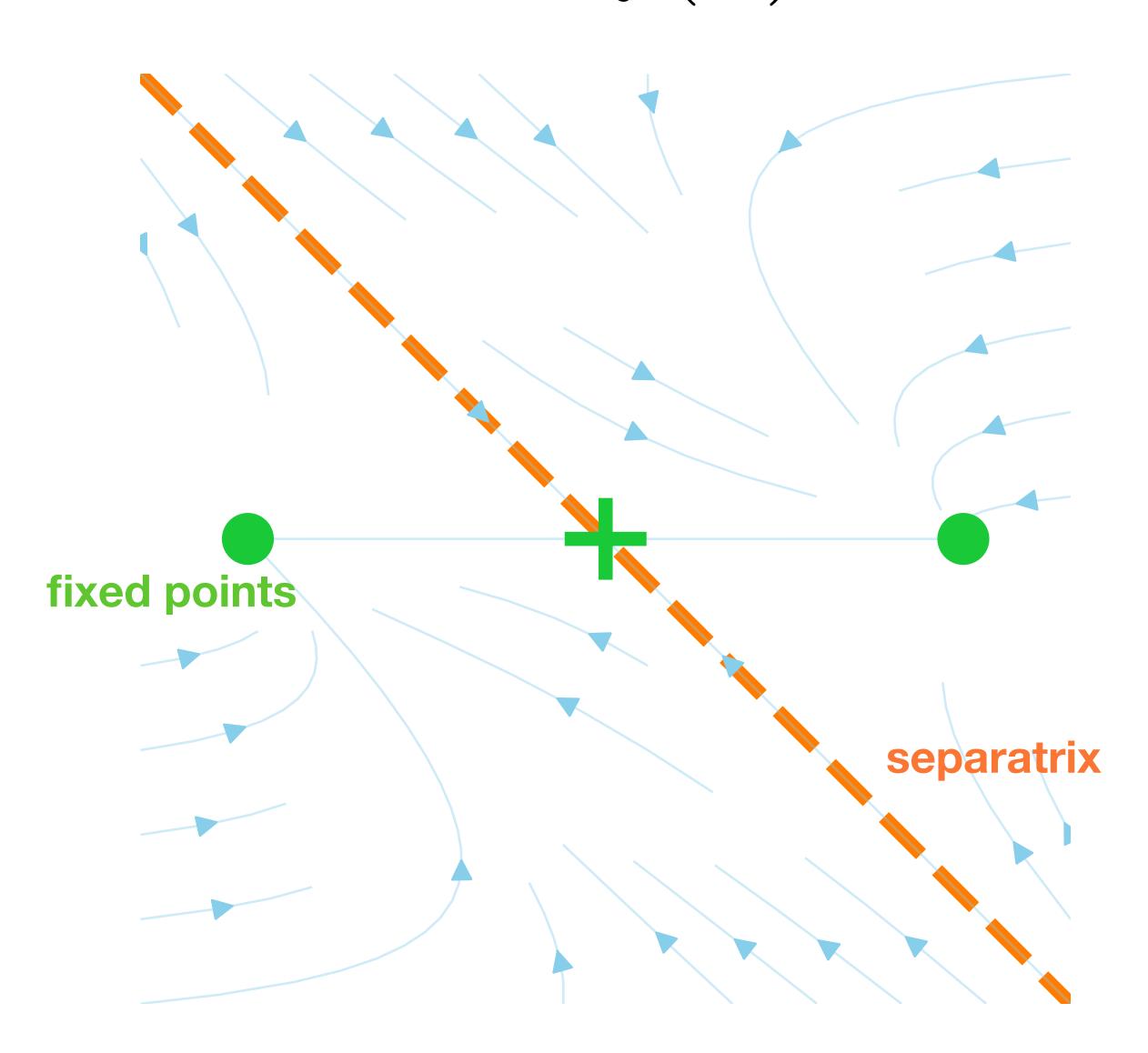




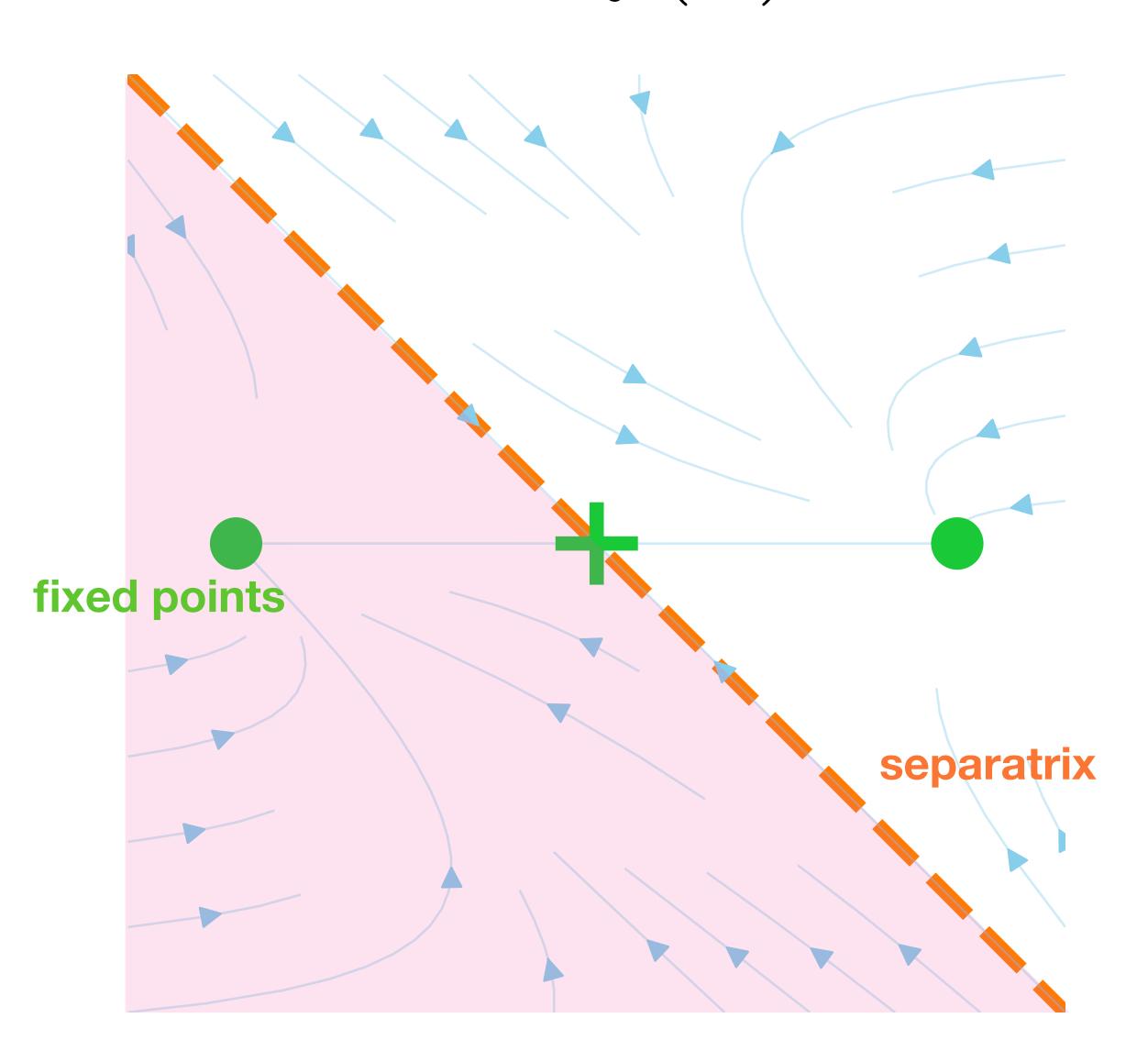
$$\dot{m{x}} = f(m{x})$$



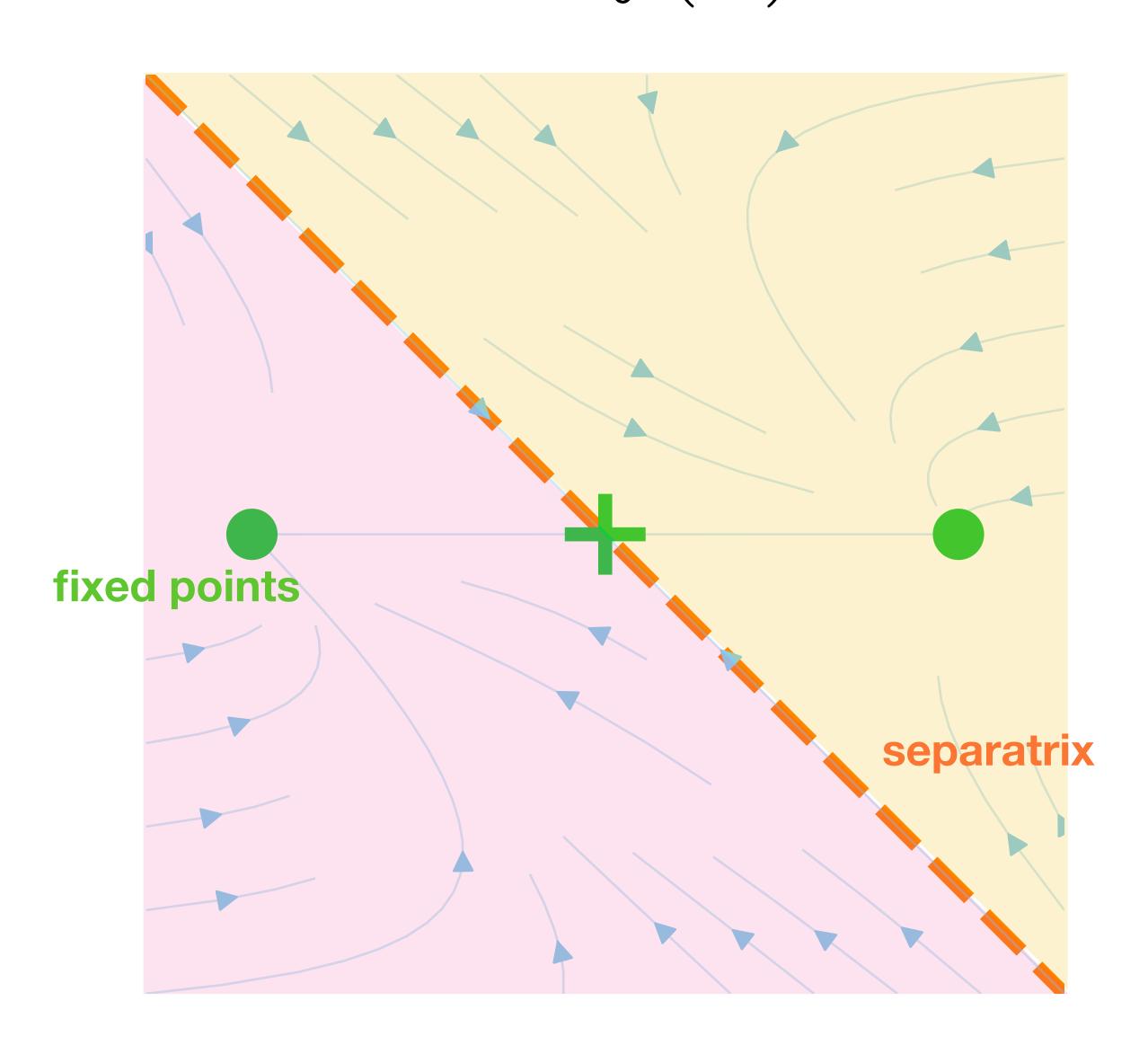
$$\dot{x} = f(x)$$



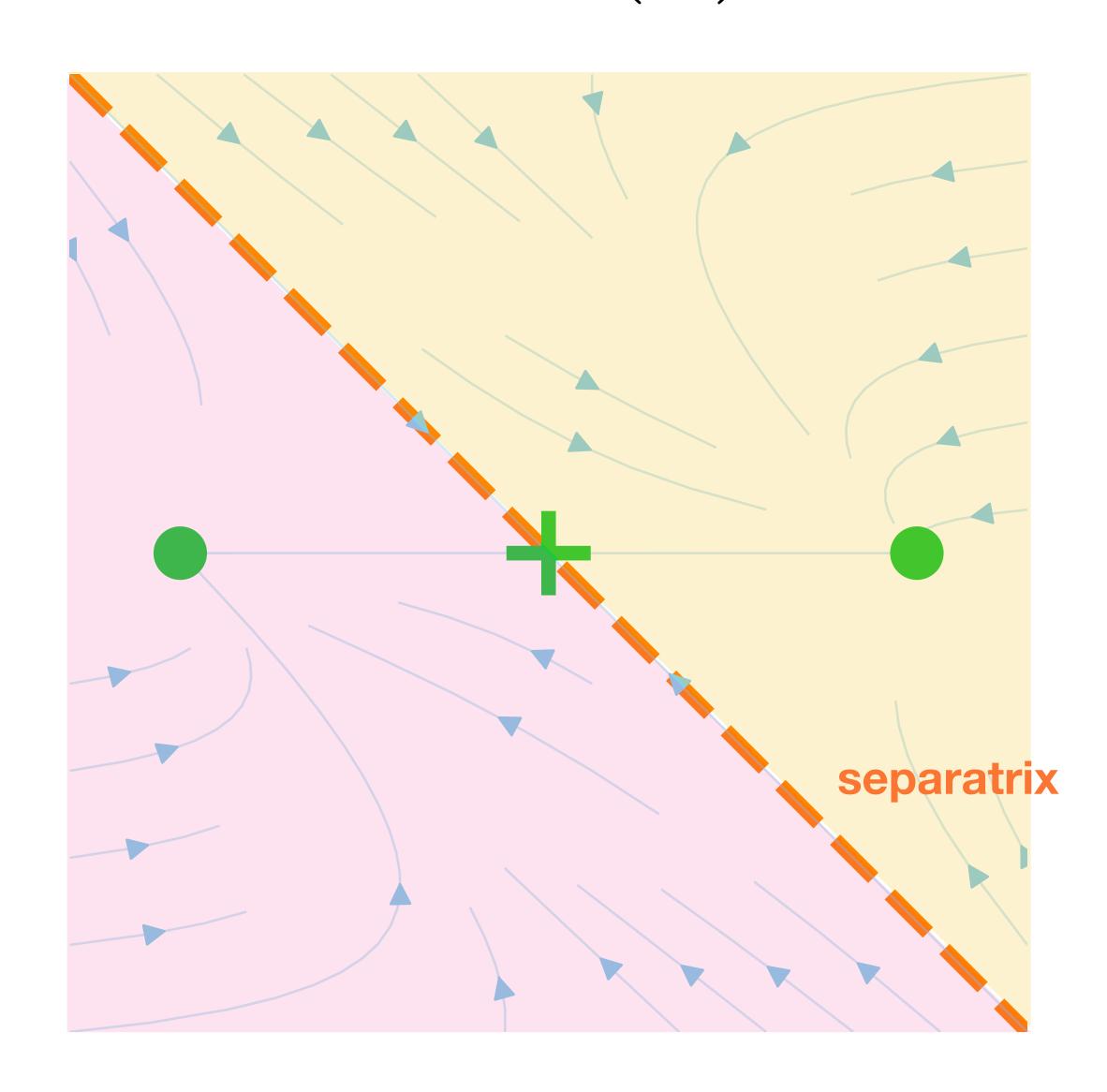
$$\dot{m{x}} = f(m{x})$$



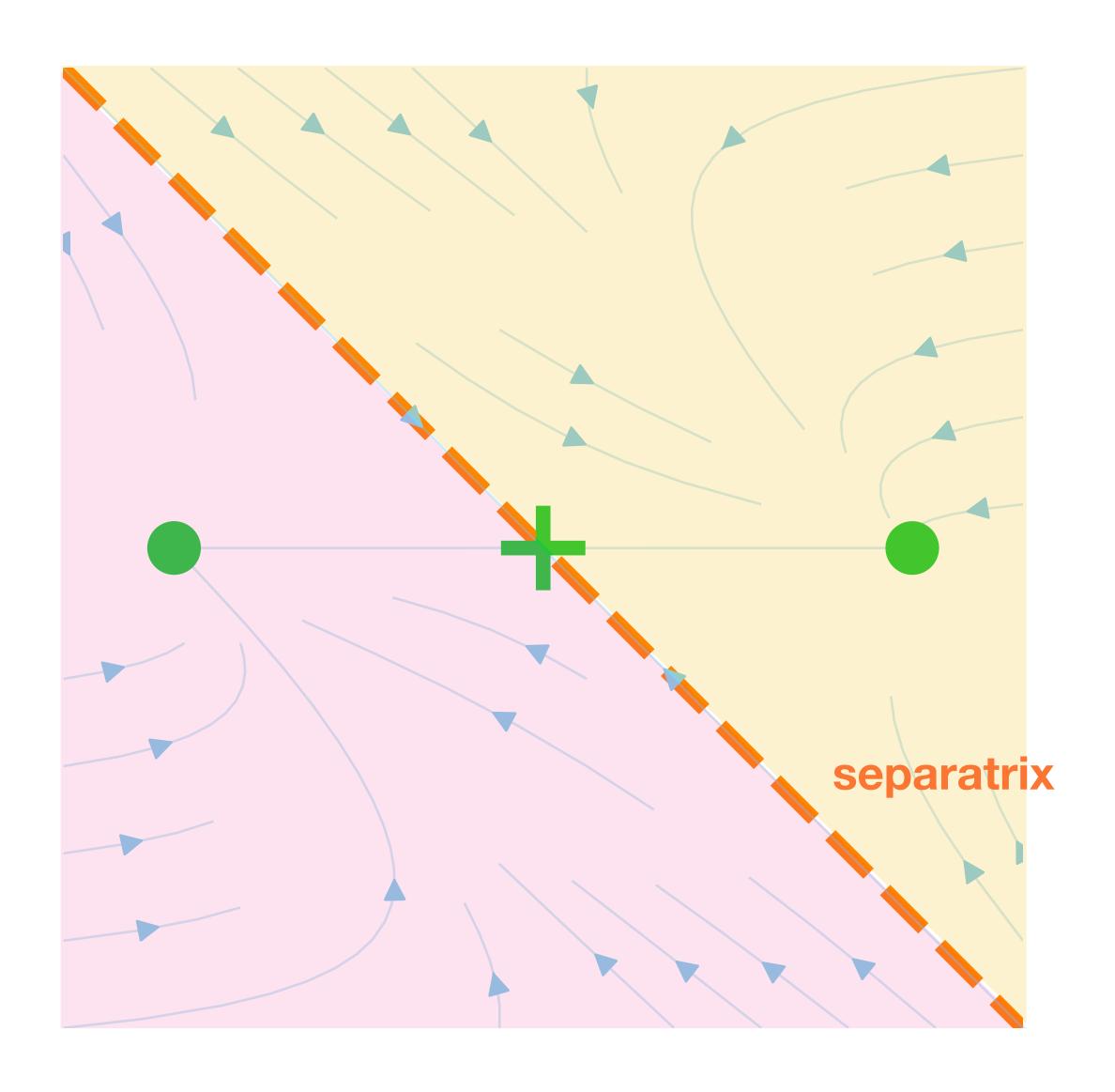
$$\dot{x} = f(x)$$



$$\dot{x} = f(x)$$

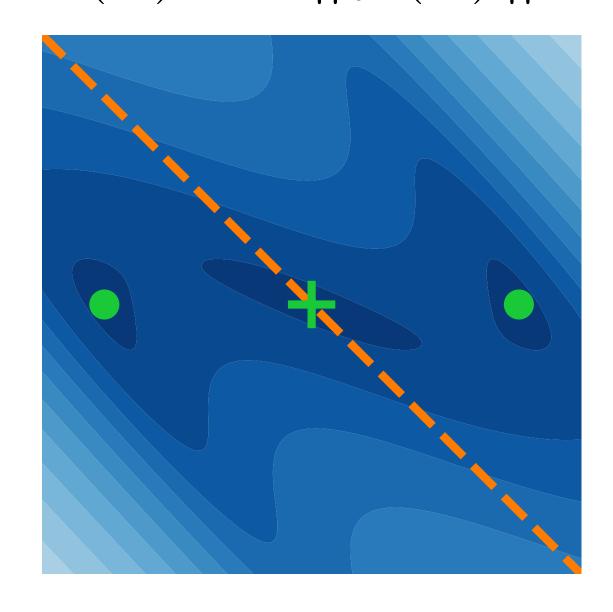


$$\dot{x} = f(x)$$

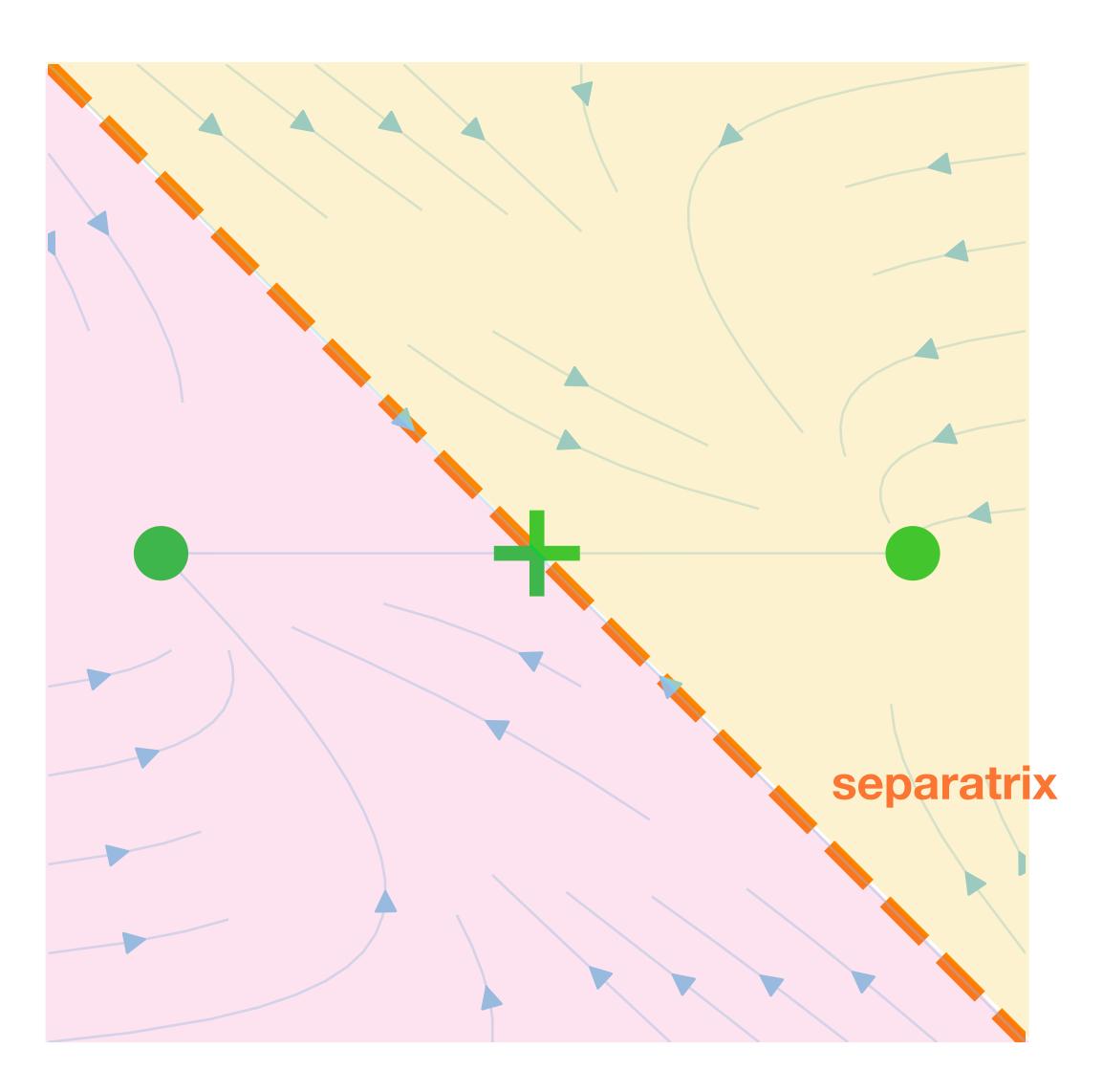


$\dot{x} = f(x)$

$$q(x) := ||f(x)||^2$$

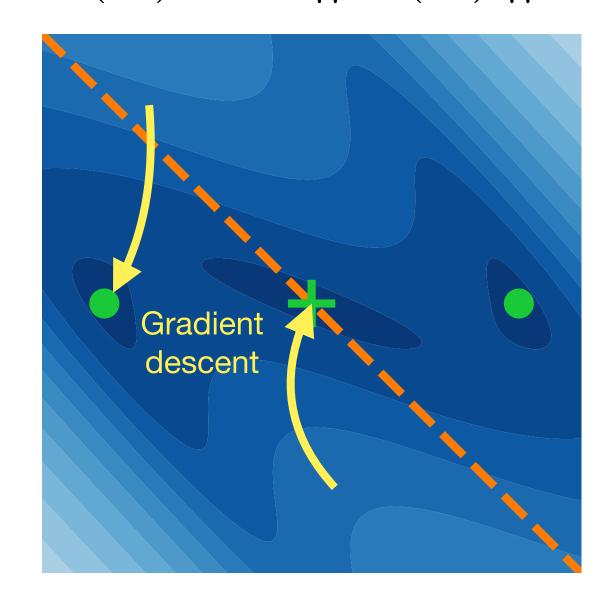


Sussillo and Barak 2013

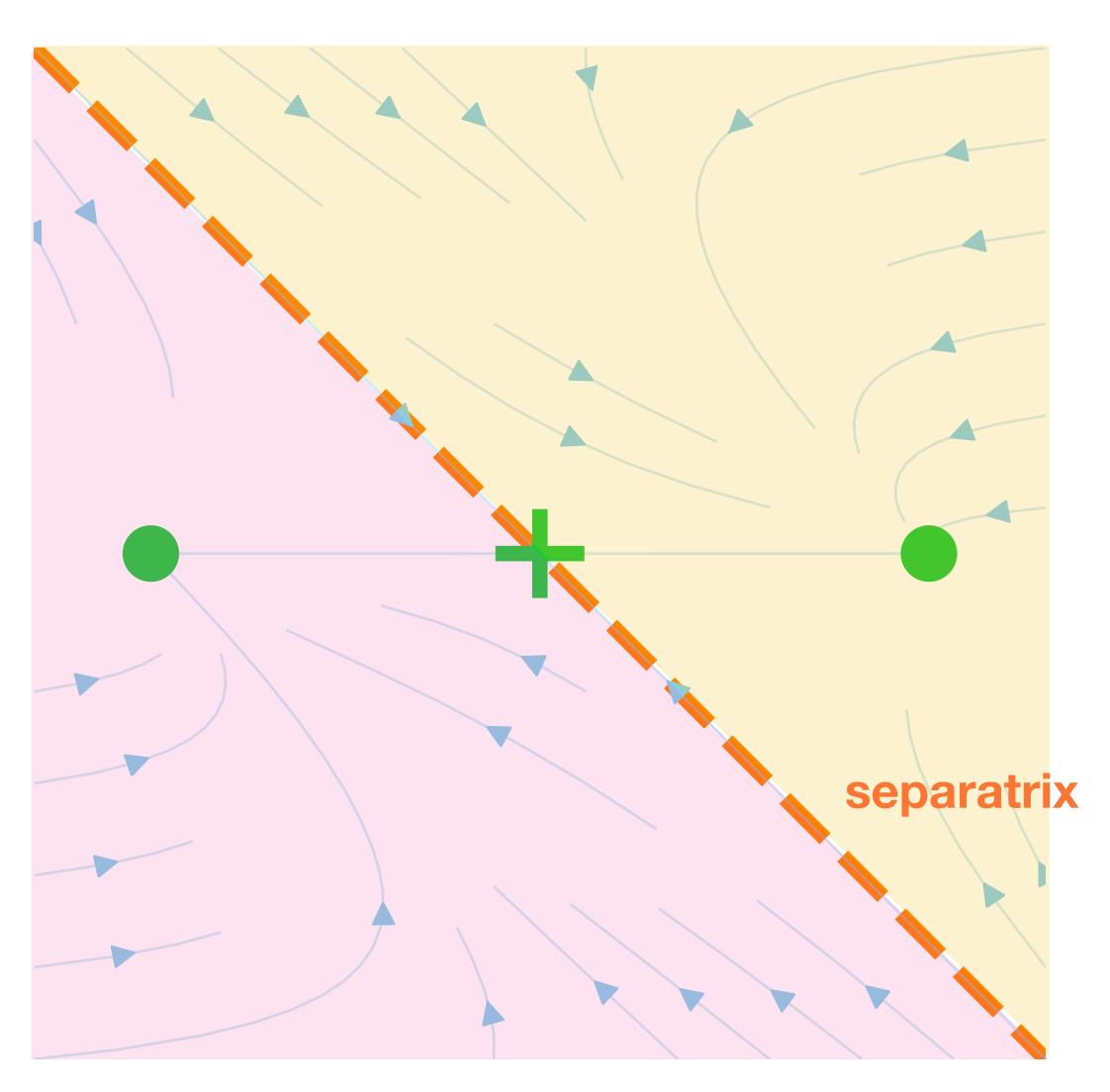


$\dot{x} = f(x)$

$$q(x) := ||f(x)||^2$$

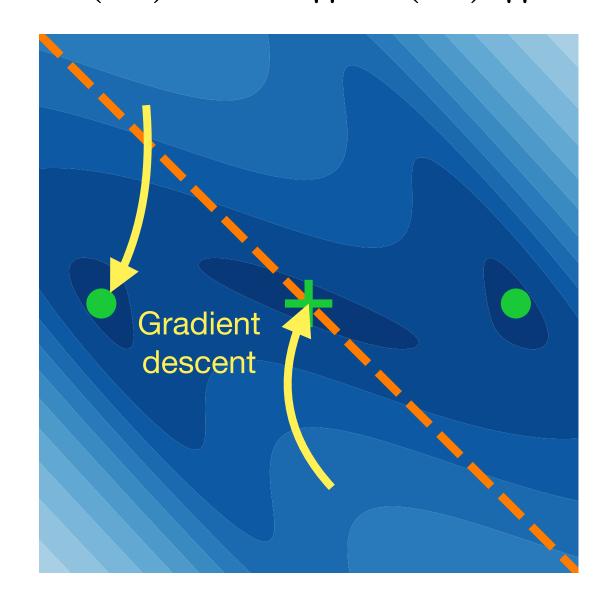


Sussillo and Barak 2013



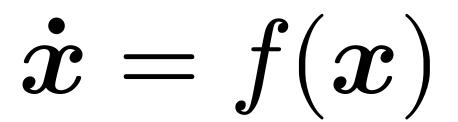
fixed points

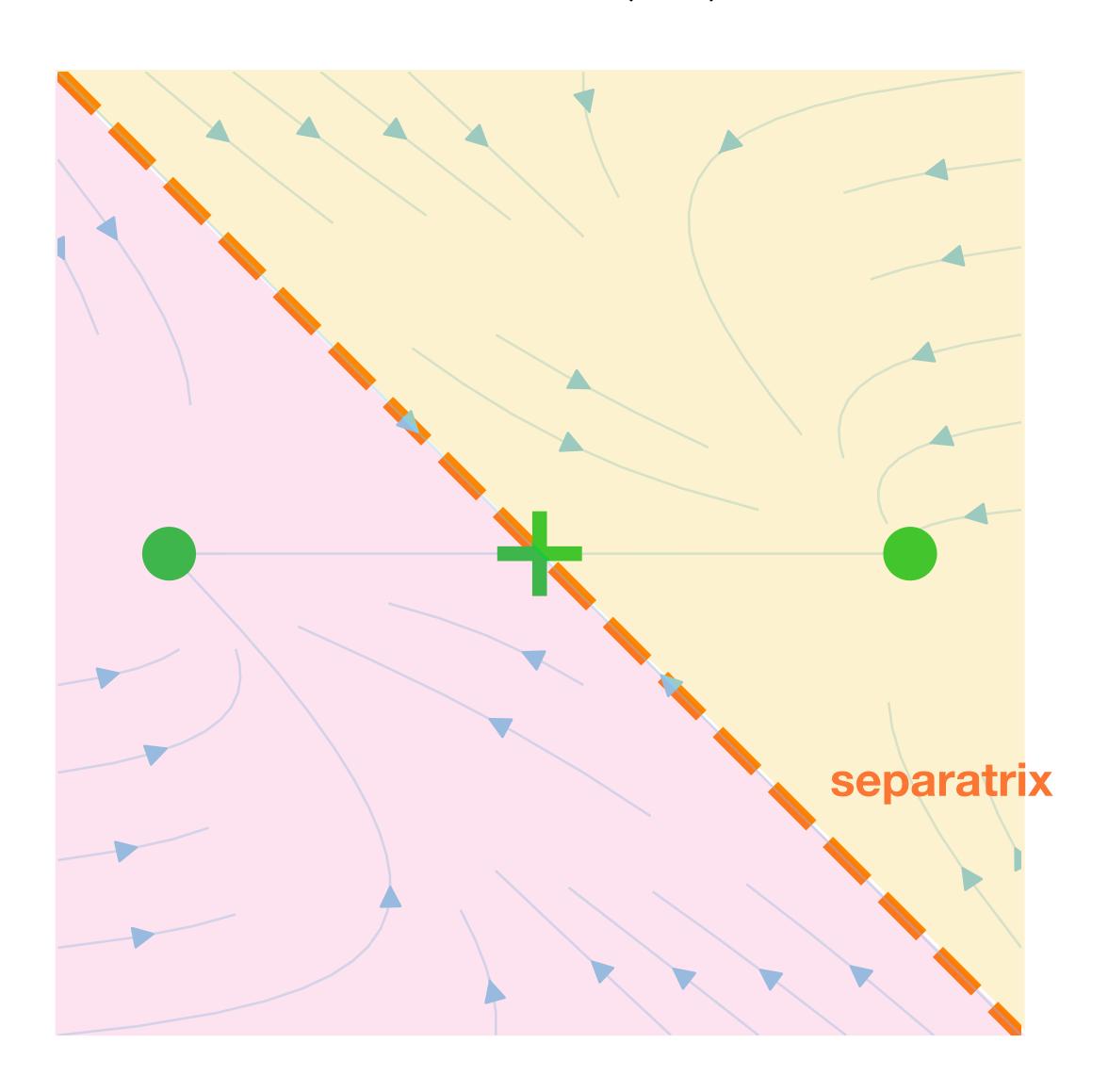
$$q(x) := ||f(x)||^2$$



Sussillo and Barak 2013

Works in high-dimensional Recurrent Neural Networks!

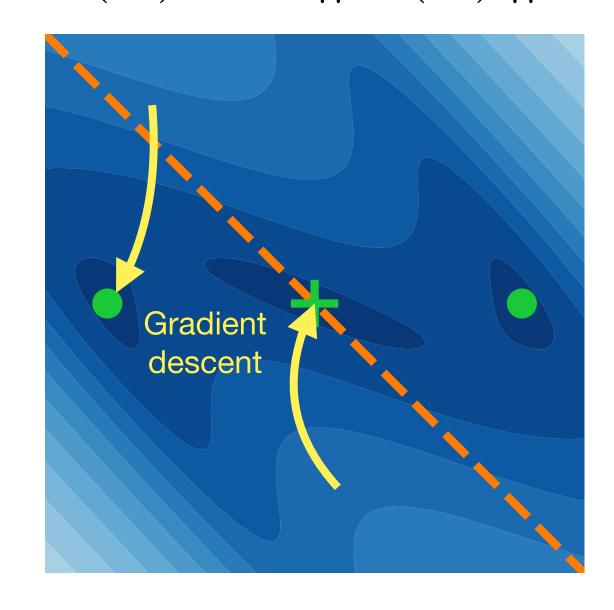




$\dot{x} = f(x)$

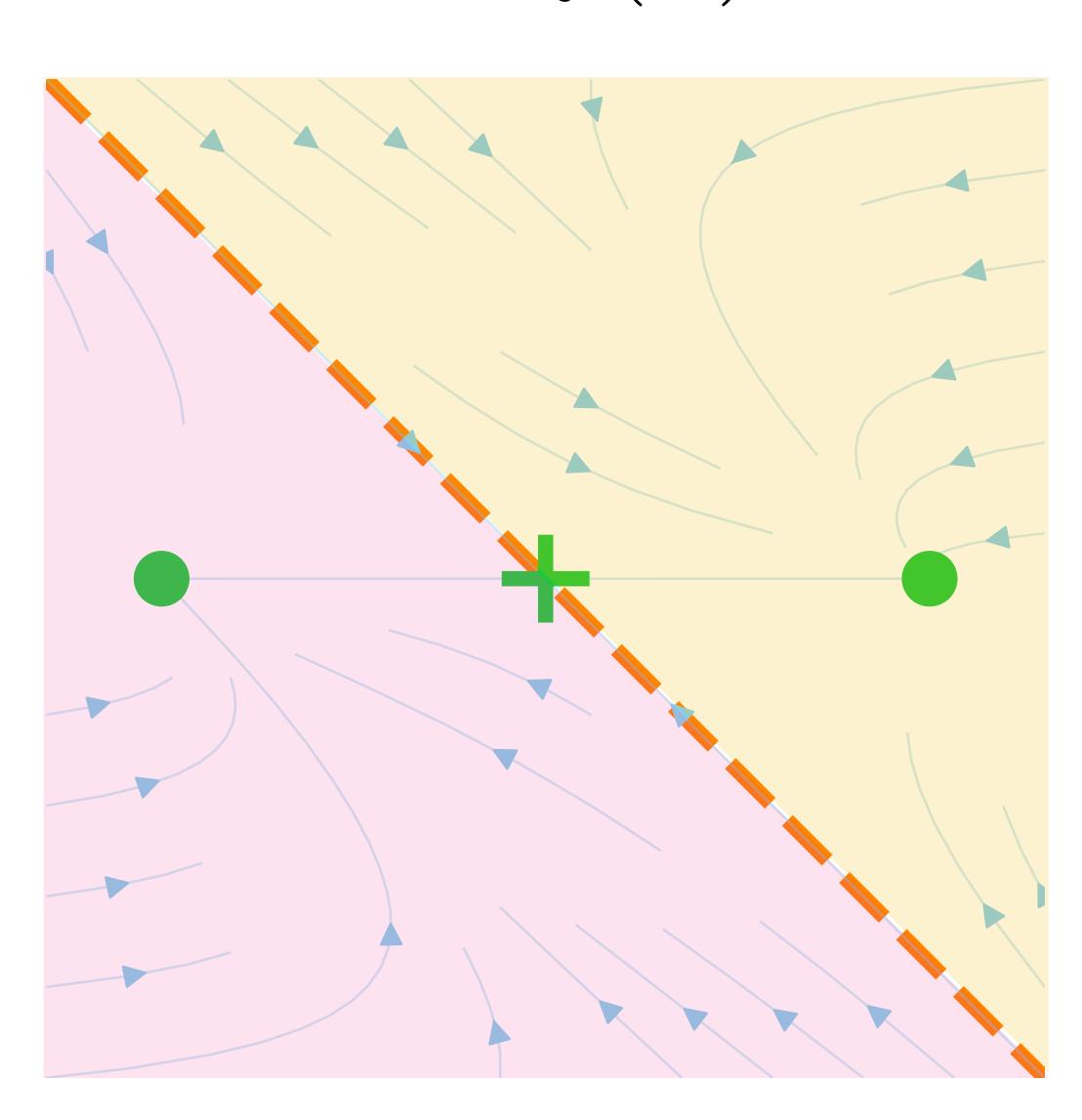
fixed points

$$q(x) := ||f(x)||^2$$



Sussillo and Barak 2013

Works in high-dimensional Recurrent Neural Networks!

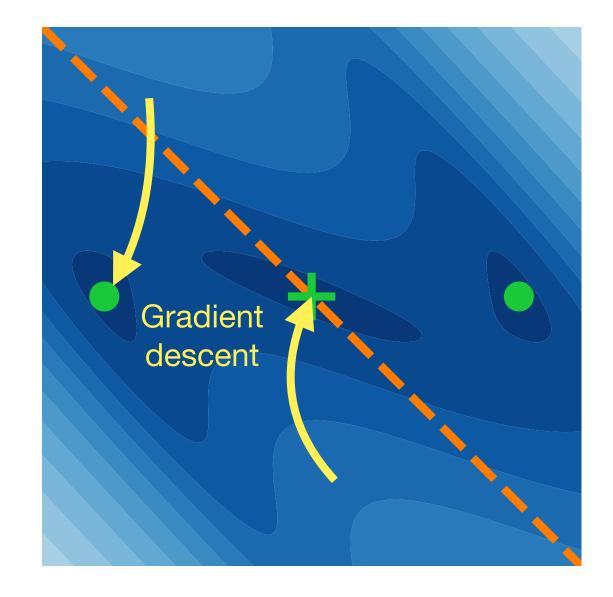


$\dot{x} = f(x)$

decision boundaries, optimal perturbations

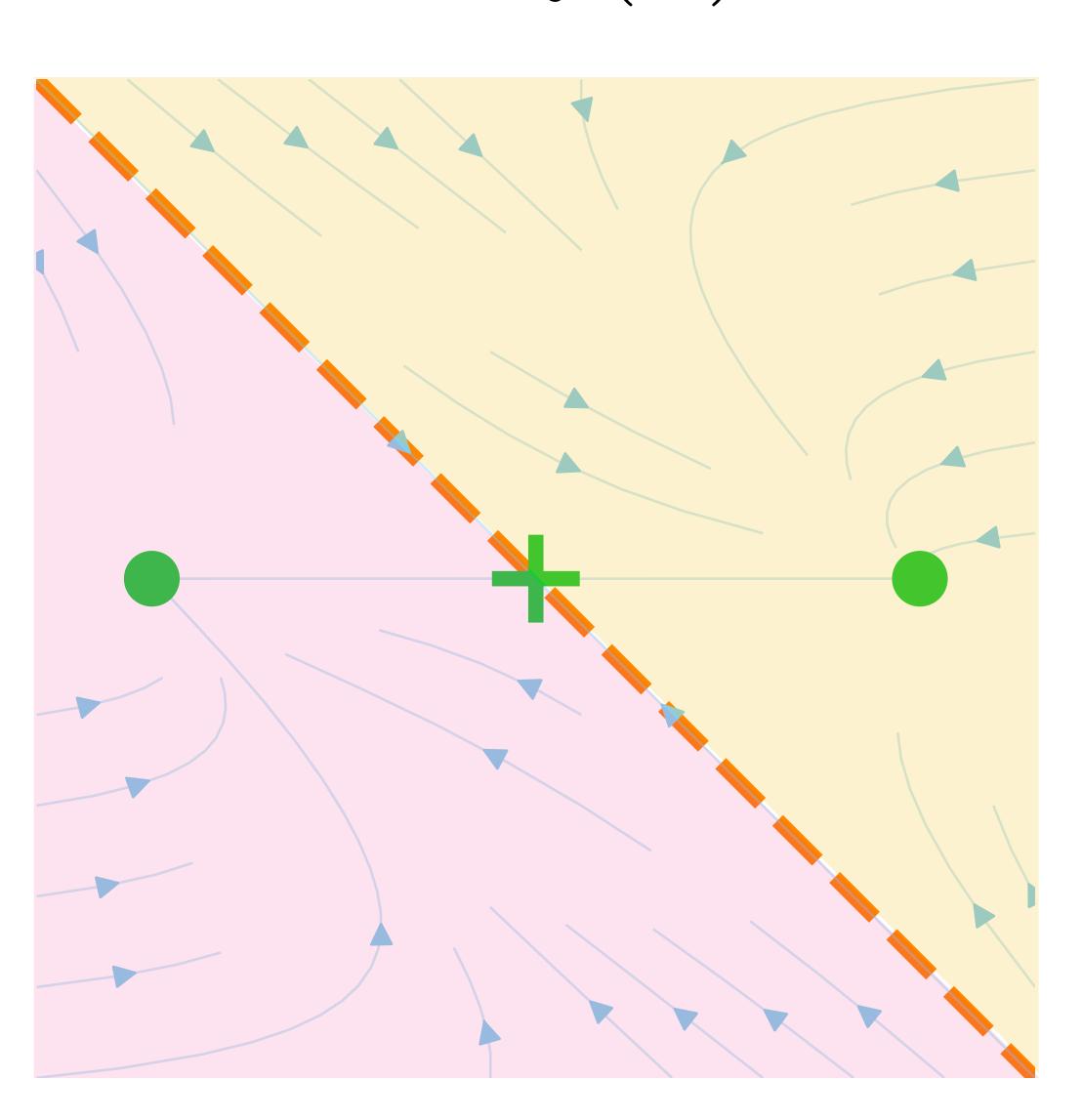
fixed points

$$q(x) := ||f(x)||^2$$



Sussillo and Barak 2013

Works in high-dimensional Recurrent Neural Networks!

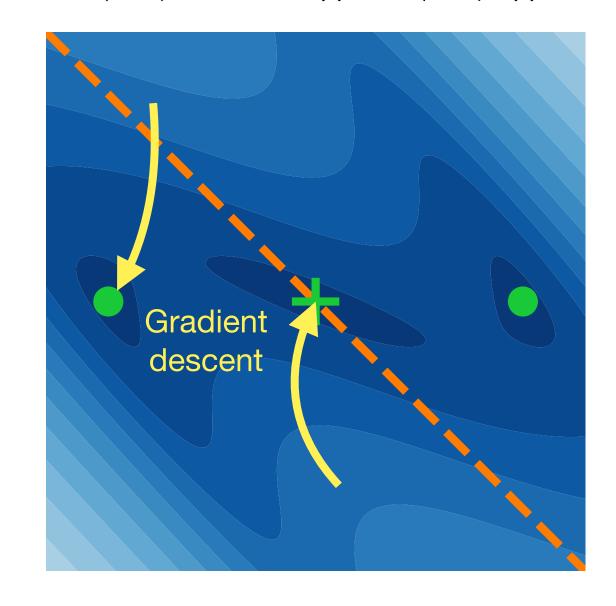


$\dot{x} = f(x)$

decision boundaries, optimal perturbations

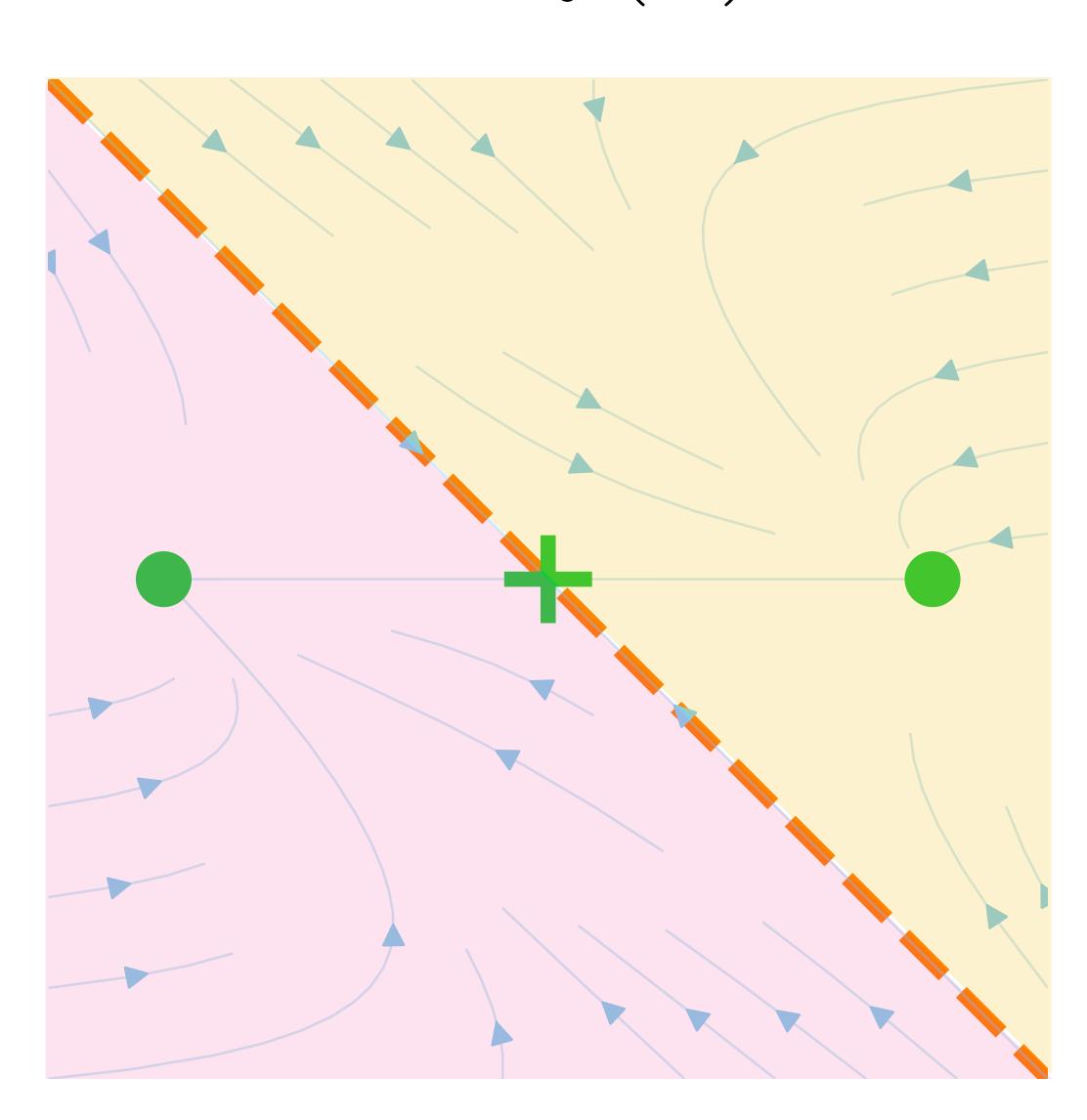
fixed points

$$q(x) := ||f(x)||^2$$

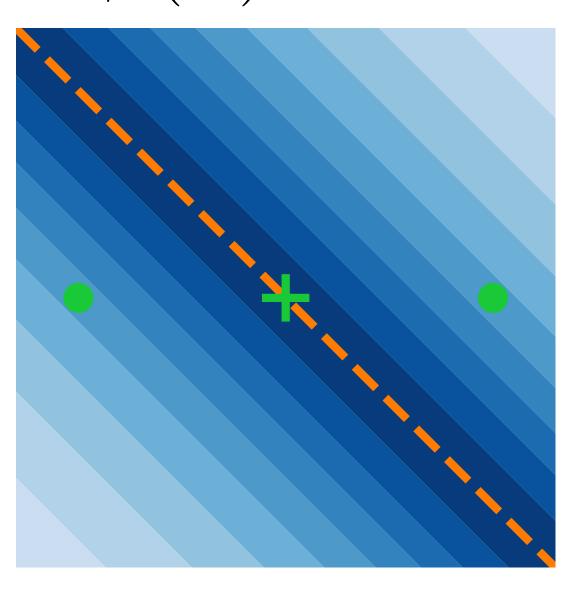


Sussillo and Barak 2013

Works in high-dimensional Recurrent Neural Networks!



$$\psi(x) := ?$$



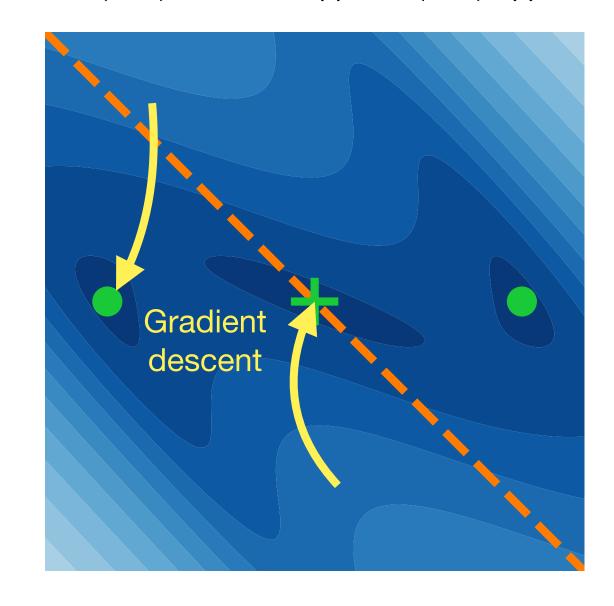
our work

$\dot{x} = f(x)$

decision boundaries, optimal perturbations

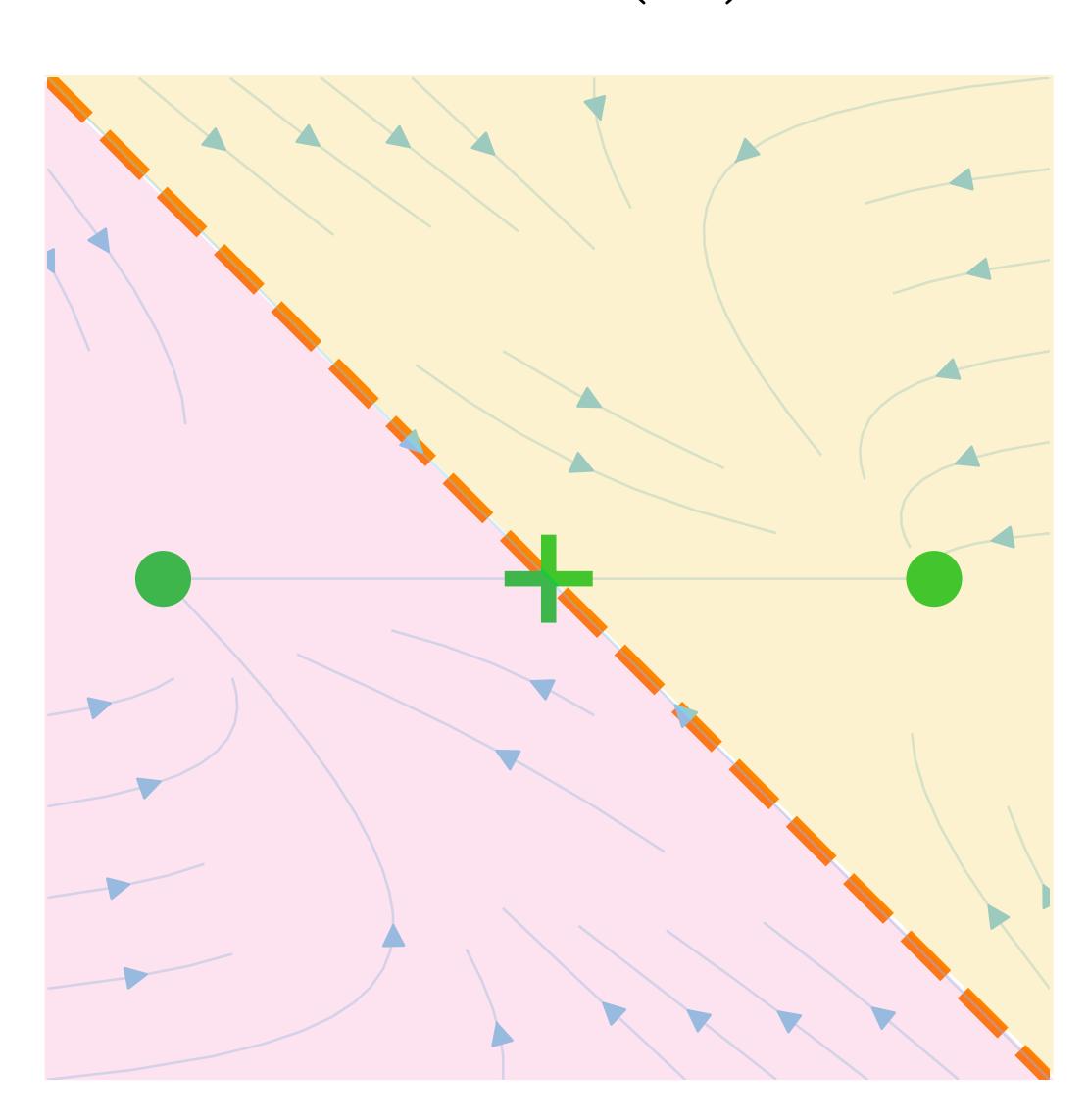
fixed points

$$q(x) := ||f(x)||^2$$

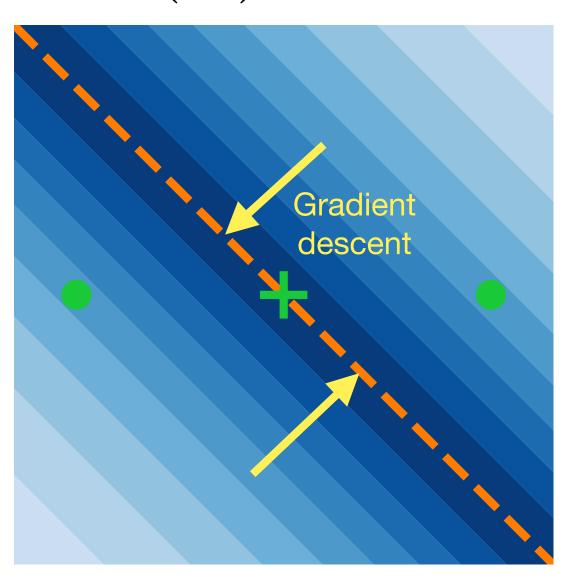


Sussillo and Barak 2013

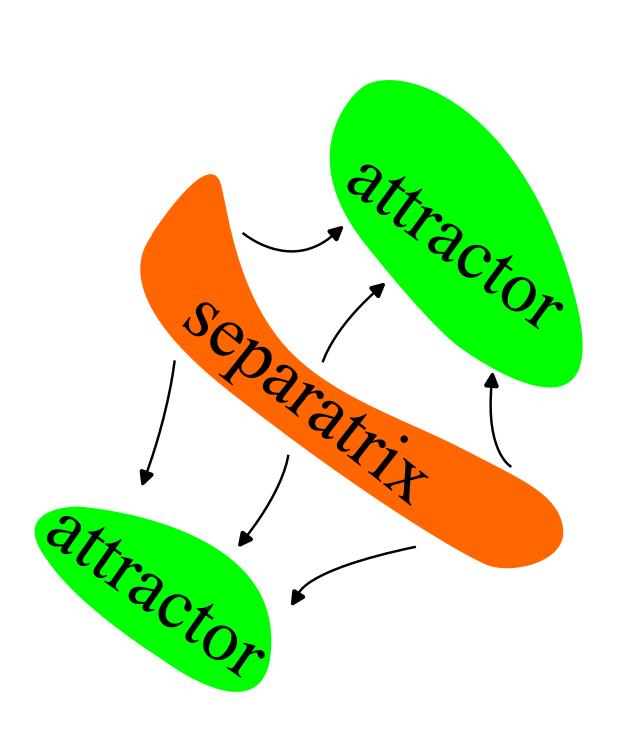
Works in high-dimensional Recurrent Neural Networks!

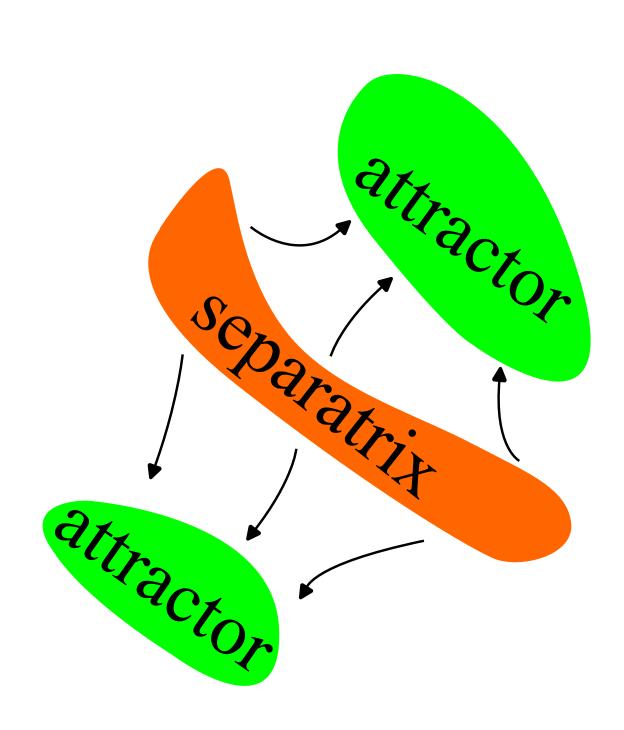


$$\psi(x) := ?$$

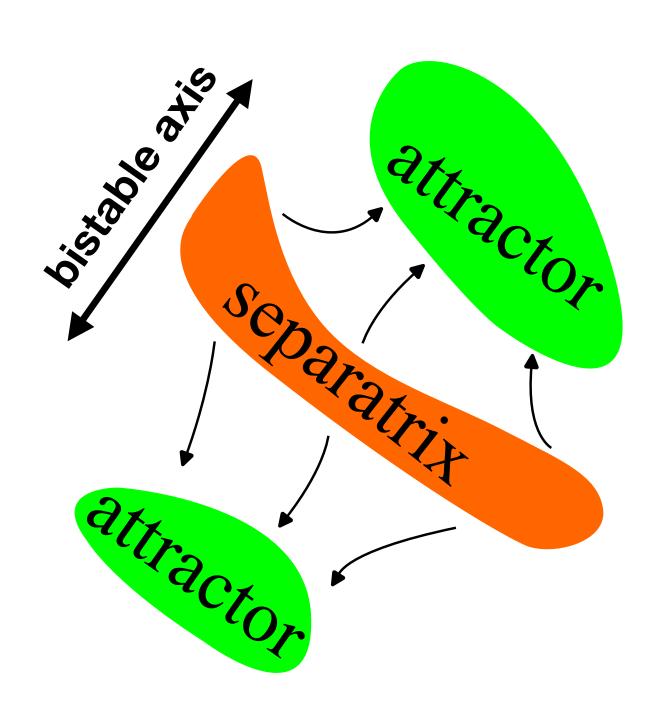


our work

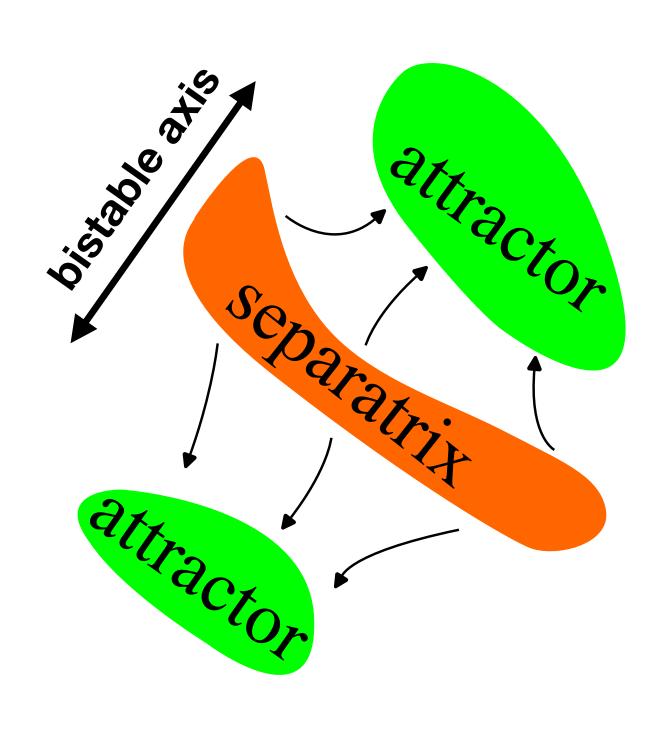




$$\dot{x} = f(x)$$
 $x \in \mathcal{X}$

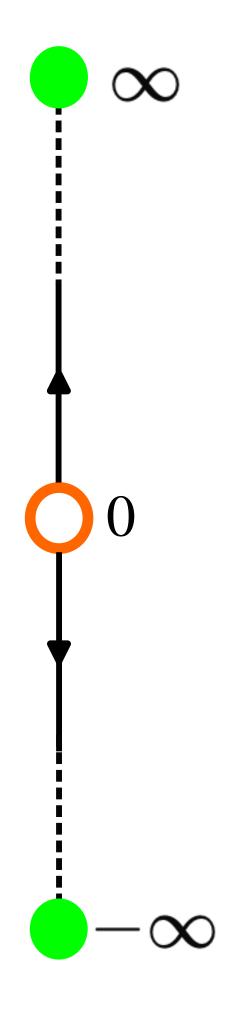


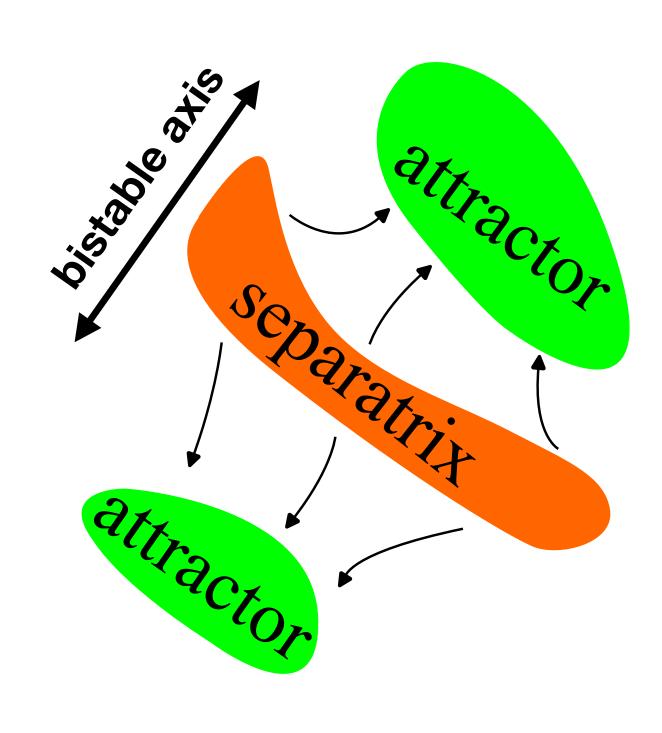
$$\dot{x} = f(x)$$
 $x \in \mathcal{X}$



$$\dot{x} = f(x)$$

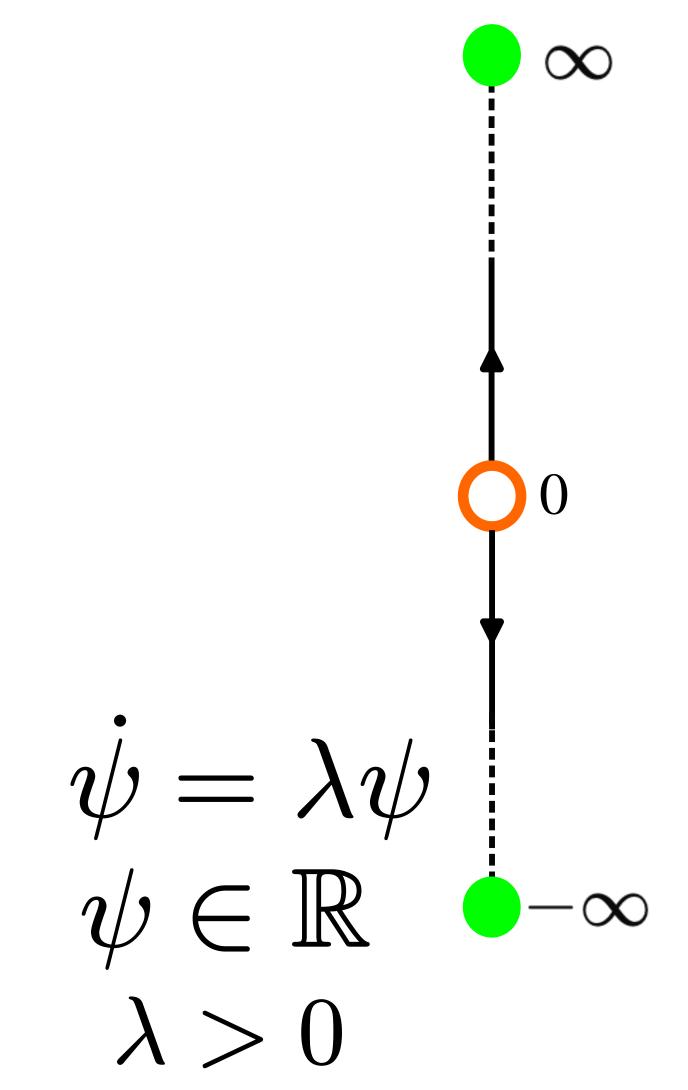
$$oldsymbol{x} \in \mathcal{X}$$

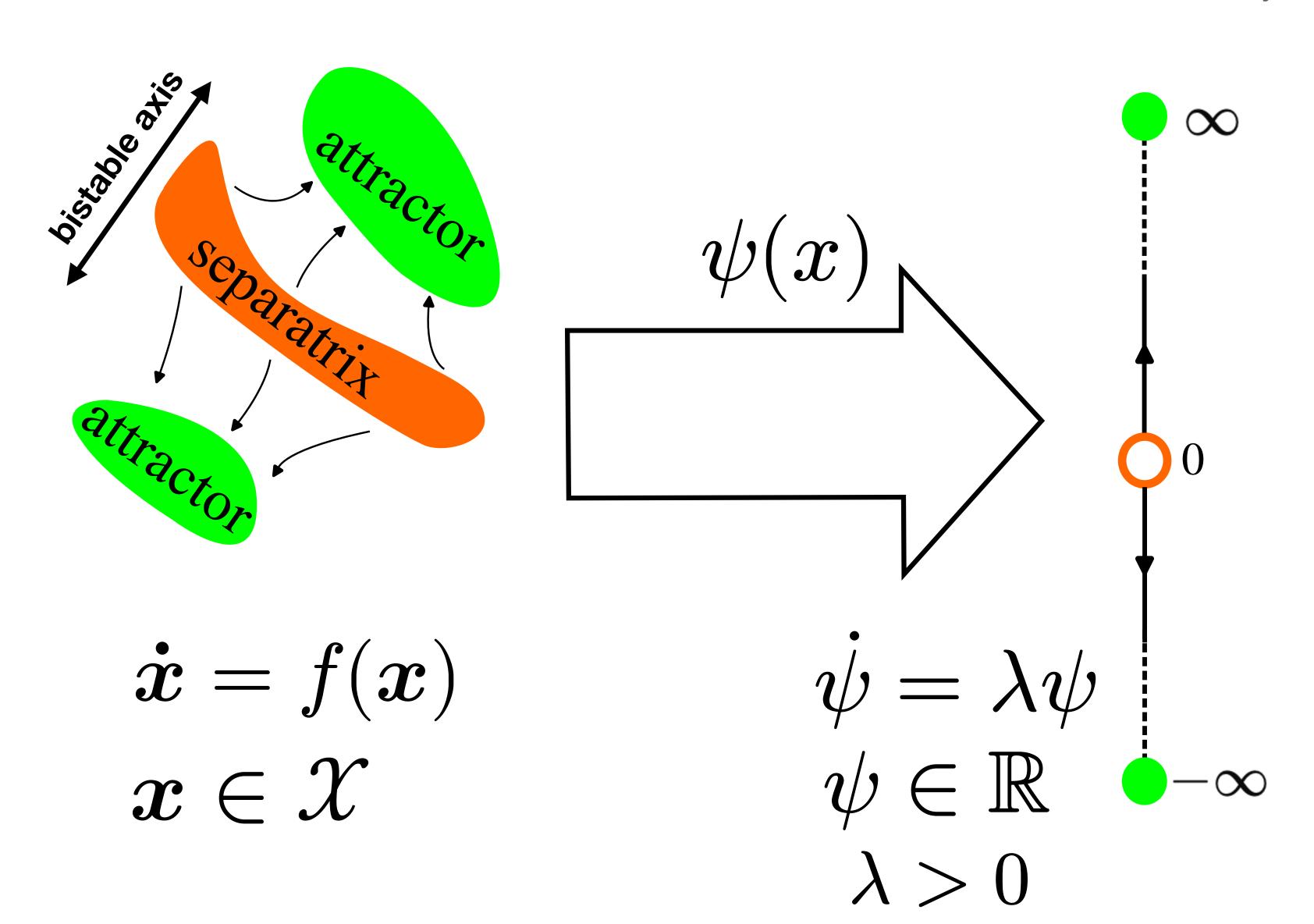


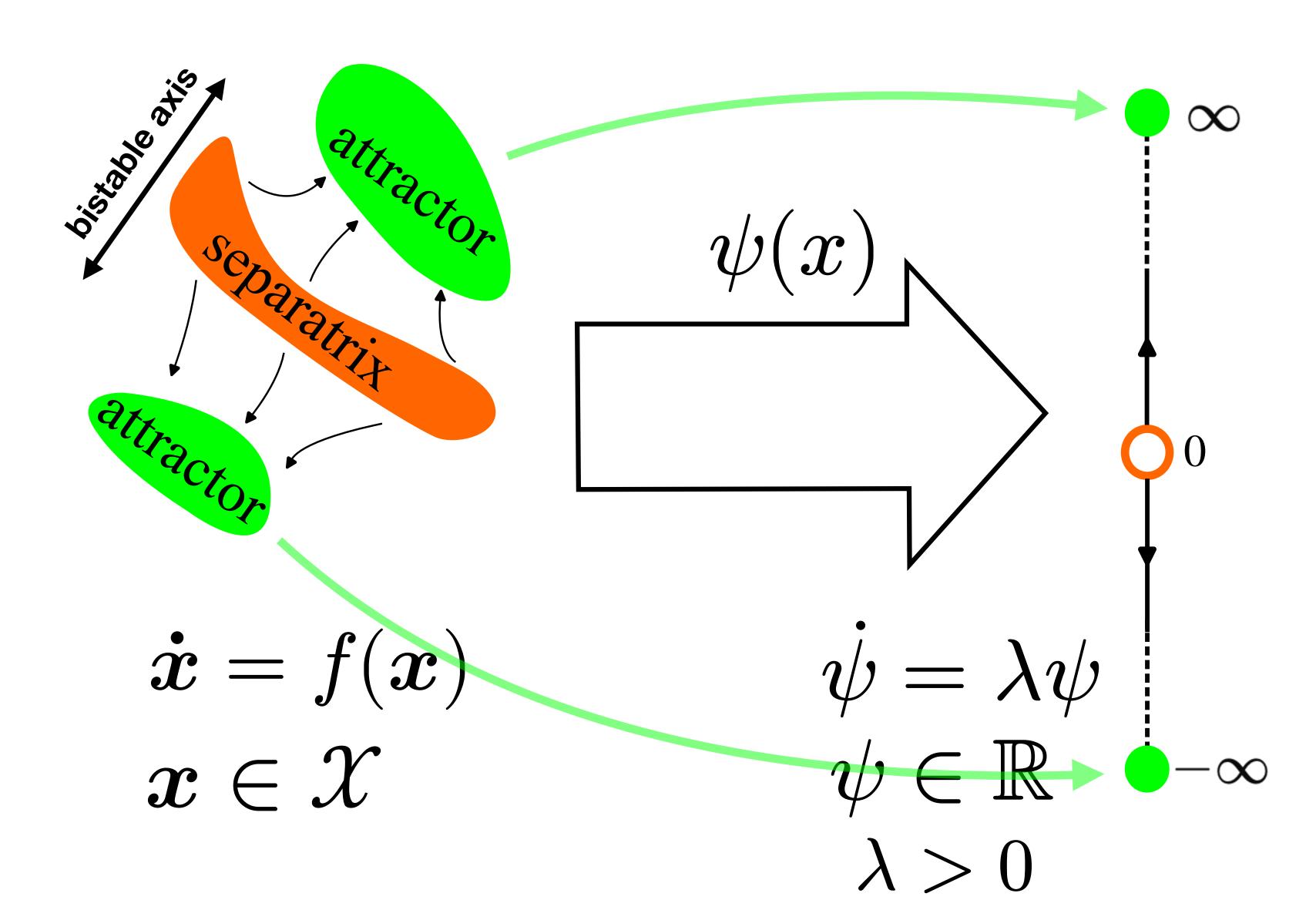


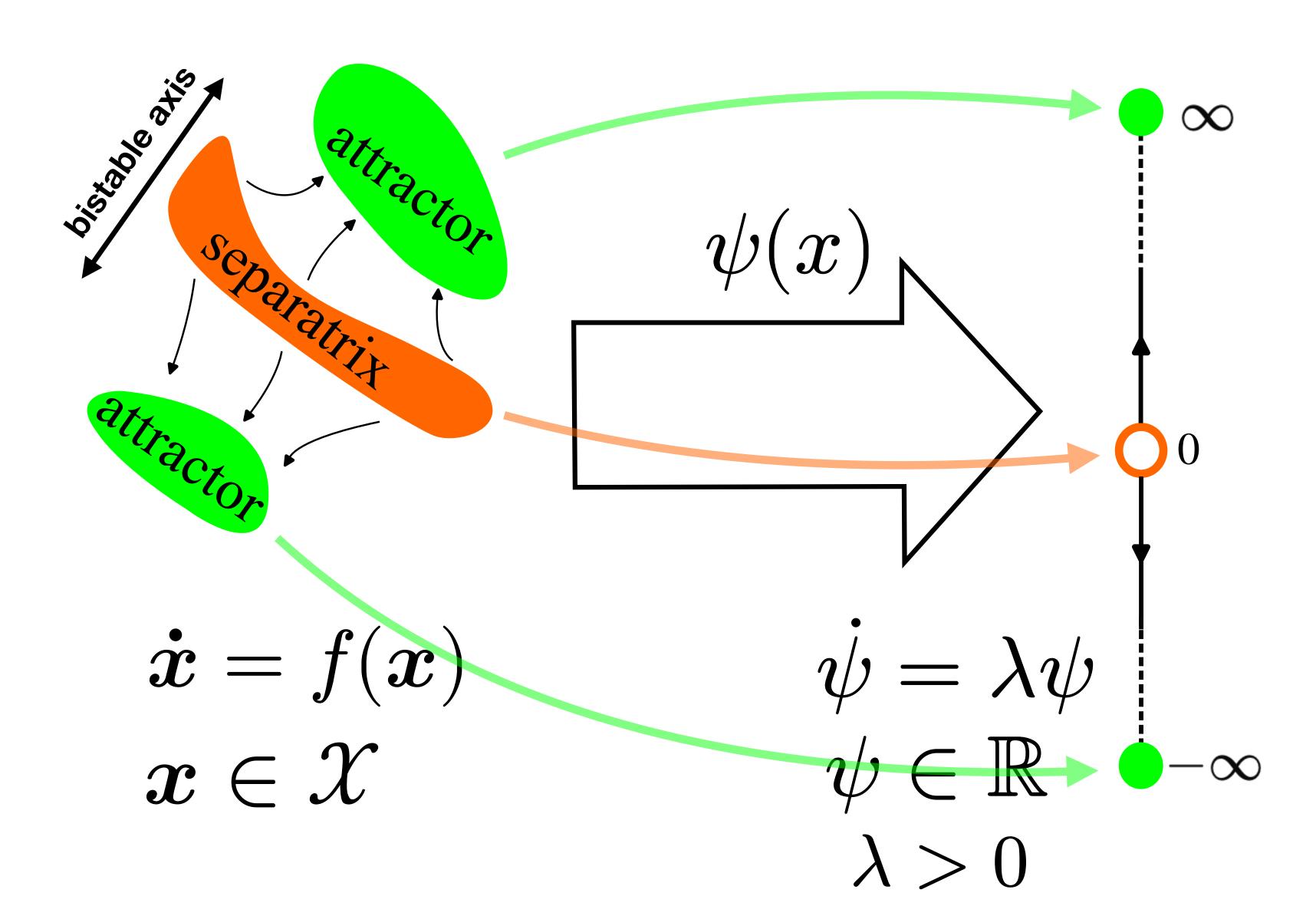
$$\dot{x} = f(x)$$

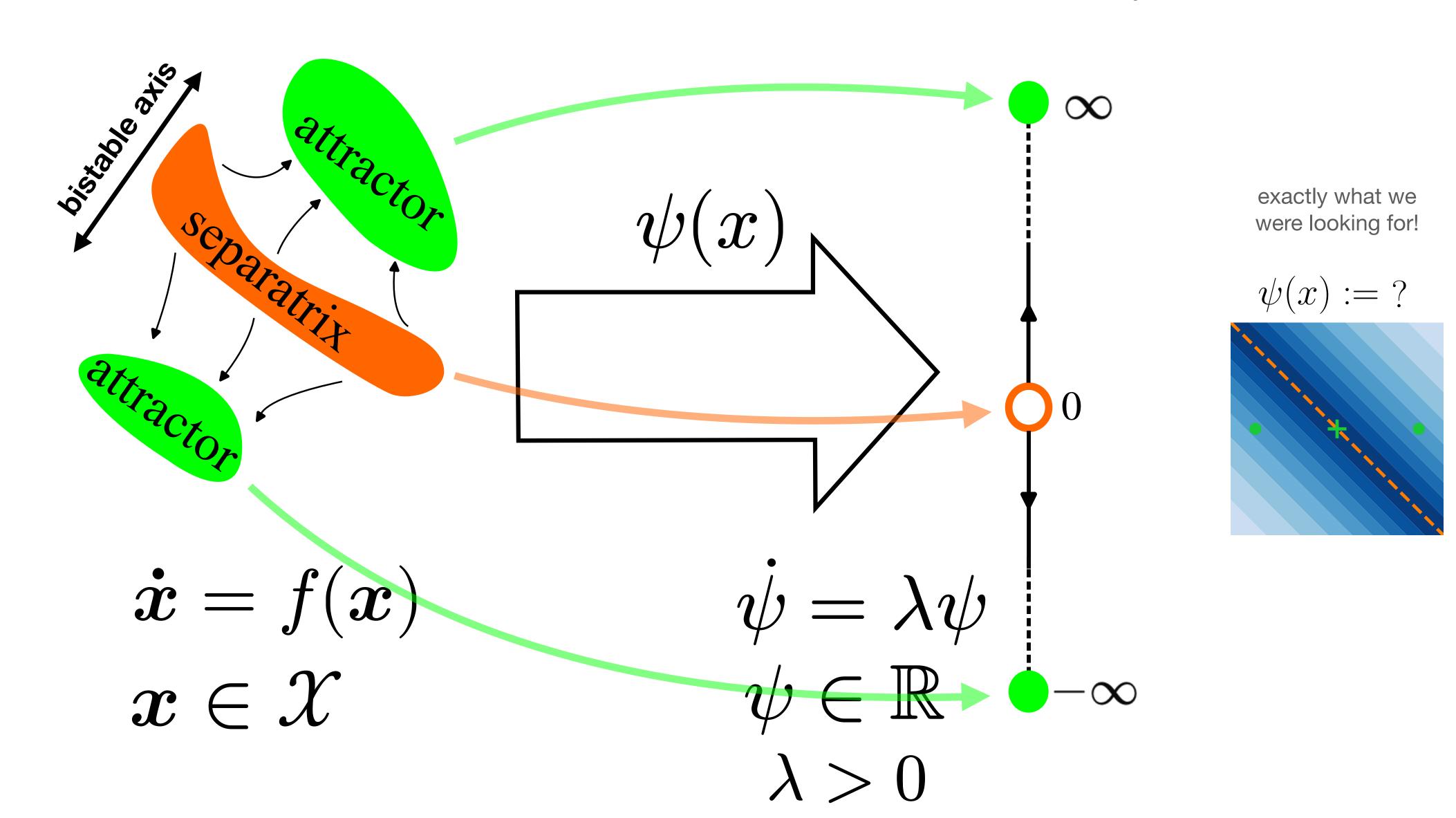
$$oldsymbol{x} \in \mathcal{X}$$

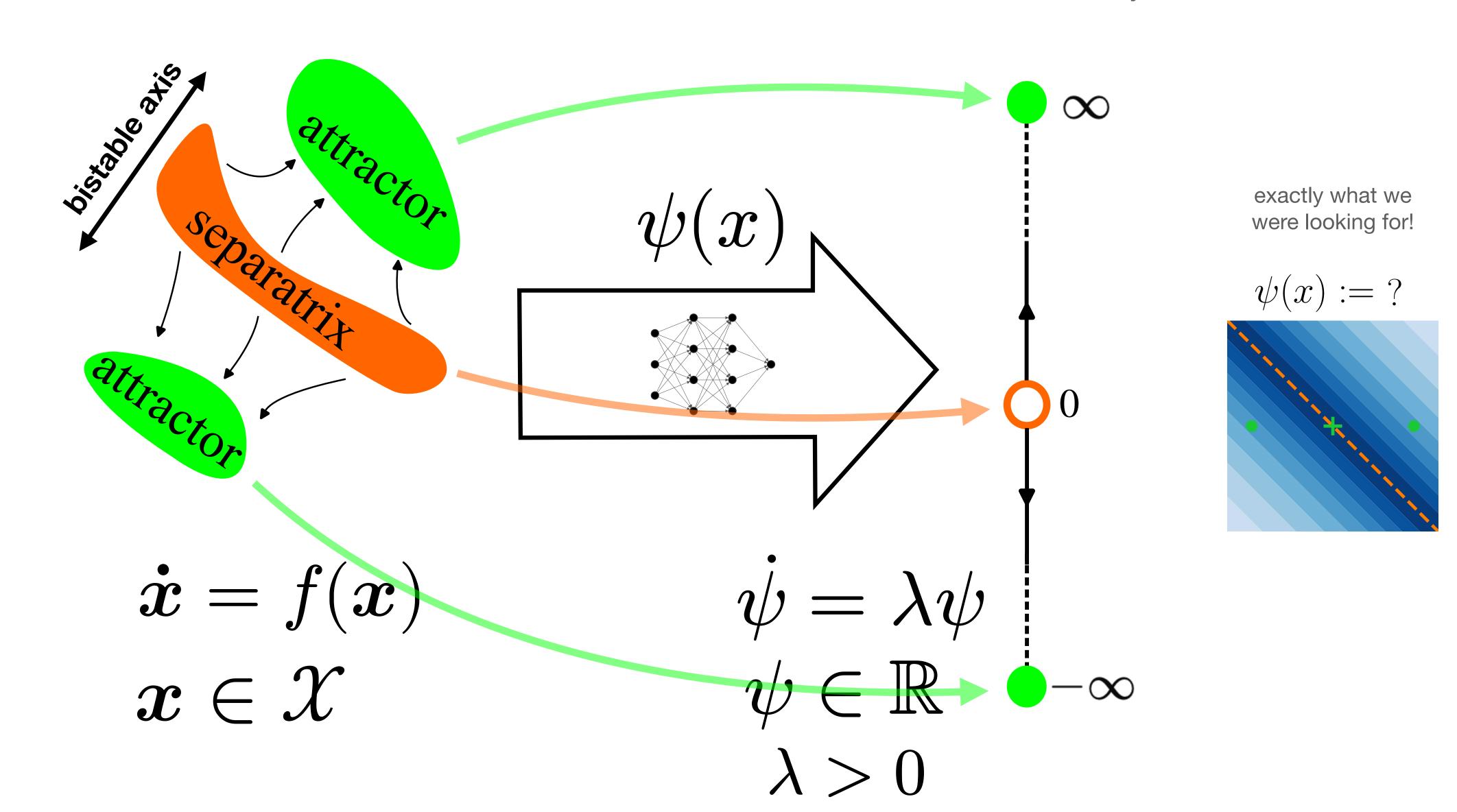












we want

$$oldsymbol{x}(t)$$
 evolves as $\dot{oldsymbol{x}}=f(oldsymbol{x})$

we want

 $m{x}(t)$ evolves as $\dot{m{x}} = f(m{x})$ $\psiig(m{x}(t)ig)$ evolves as:

$$m{x}(t)$$
 evolves as $\dot{m{x}} = f(m{x})$ $\psiig(m{x}(t)ig)$ evolves as:

$$\frac{d}{dt}\psi = \lambda\psi$$

$$m{x}(t)$$
 evolves as $\dot{m{x}} = f(m{x})$ $\psiig(m{x}(t)ig)$ evolves as:

$$\frac{d}{dt}\psi = \lambda \psi$$

$$m{x}(t)$$
 evolves as $\dot{m{x}} = f(m{x})$ $\psiig(m{x}(t)ig)$ evolves as:

$$\frac{d}{dt}\psi(\mathbf{x}(t)) = \lambda\psi(\mathbf{x}(t))$$

$$m{x}(t)$$
 evolves as $\dot{m{x}} = f(m{x})$ $\psi(m{x}(t))$ evolves as:

$$rac{d}{dt}\psiig(x(t)ig)=\lambda\psiig(x(t)ig)$$
 Koopman Eigenfunction!

$$m{x}(t)$$
 evolves as $\dot{m{x}} = f(m{x})$ $\psi(m{x}(t))$ evolves as:

$$rac{d}{dt}\psiig(m{x}(t)ig) = \lambda\psiig(m{x}(t)ig)$$
 Koopman Eigenfunction!

$$abla \psi(oldsymbol{x})^T rac{doldsymbol{x}}{dt}$$

$$m{x}(t)$$
 evolves as $\dot{m{x}} = f(m{x})$ $\psi(m{x}(t))$ evolves as:

$$rac{d}{dt}\psiig(m{x}(t)ig) = \lambda\psiig(m{x}(t)ig)$$
 Koopman Eigenfunction!

$$abla \psi(oldsymbol{x})^T f(oldsymbol{x})$$

$$m{x}(t)$$
 evolves as $\dot{m{x}} = f(m{x})$ $\psi(m{x}(t))$ evolves as:

$$rac{d}{dt}\psiig(m{x}(t)ig) = \lambda\psiig(m{x}(t)ig)$$
 Koopman Eigenfunction!

$$abla \psi(oldsymbol{x})^T f(oldsymbol{x}) = \lambda \, \psi(oldsymbol{x})$$
 partial differential equation (PDE)

$$m{x}(t)$$
 evolves as $\dot{m{x}} = f(m{x})$ $\psi(m{x}(t))$ evolves as:

$$rac{d}{dt}\psiig(m{x}(t)ig) = \lambda\psiig(m{x}(t)ig)$$
 Koopman Eigenfunction!

$$abla\psi(oldsymbol{x})^Tf(oldsymbol{x})-\lambda\psi(oldsymbol{x})$$
 partial differential equation (PDE)

$$m{x}(t)$$
 evolves as $\dot{m{x}} = f(m{x})$ $\psi(m{x}(t))$ evolves as:

$$\frac{d}{dt}\psi(x(t)) = \lambda\psi(x(t))$$

Koopman Eigenfunction!

$$\left[
abla \psi(oldsymbol{x})^T f(oldsymbol{x}) - \lambda \, \psi(oldsymbol{x})
ight]^2$$
 partial differential equation (PDE)

$$m{x}(t)$$
 evolves as $\dot{m{x}} = f(m{x})$ $\psi(m{x}(t))$ evolves as:

$$\frac{d}{dt}\psi(\boldsymbol{x}(t)) = \lambda\psi(\boldsymbol{x}(t))$$

Koopman Eigenfunction!

$$\mathbb{E}_{m{x}\sim p(m{x})}igg[
abla\psi(m{x})^Tf(m{x})-\lambda\,\psi(m{x})igg]^2$$
 partial differential equation (PDE)

$$m{x}(t)$$
 evolves as $\dot{m{x}} = f(m{x})$ $\psi(m{x}(t))$ evolves as:

$$\frac{d}{dt}\psi(\boldsymbol{x}(t)) = \lambda\psi(\boldsymbol{x}(t))$$

Koopman Eigenfunction!

chain-rule

$$\mathcal{L}_{ ext{PDE}} = \mathbb{E}_{m{x}\sim p(m{x})}igg[
abla\psi(m{x})^T f(m{x}) - \lambda\,\psi(m{x})igg]^2$$
 partial differential equation (PDE)

Loss function

$$m{x}(t)$$
 evolves as $\dot{m{x}} = f(m{x})$ $\psi(m{x}(t))$ evolves as:

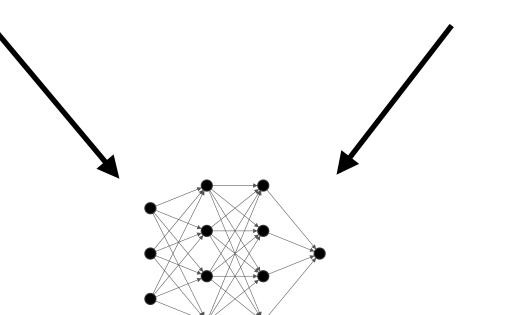
$$\frac{d}{dt}\psi(x(t)) = \lambda\psi(x(t))$$

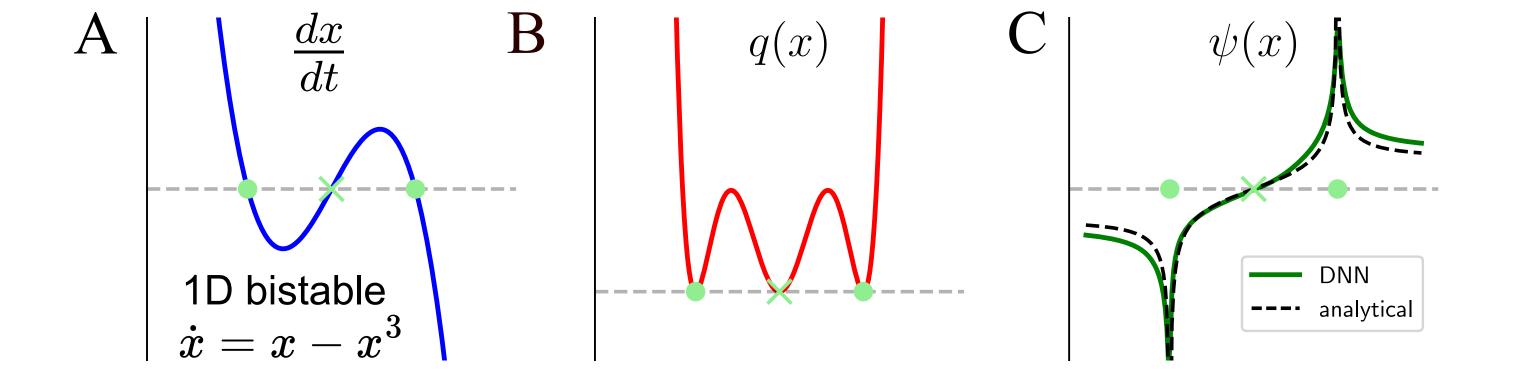
Koopman Eigenfunction!

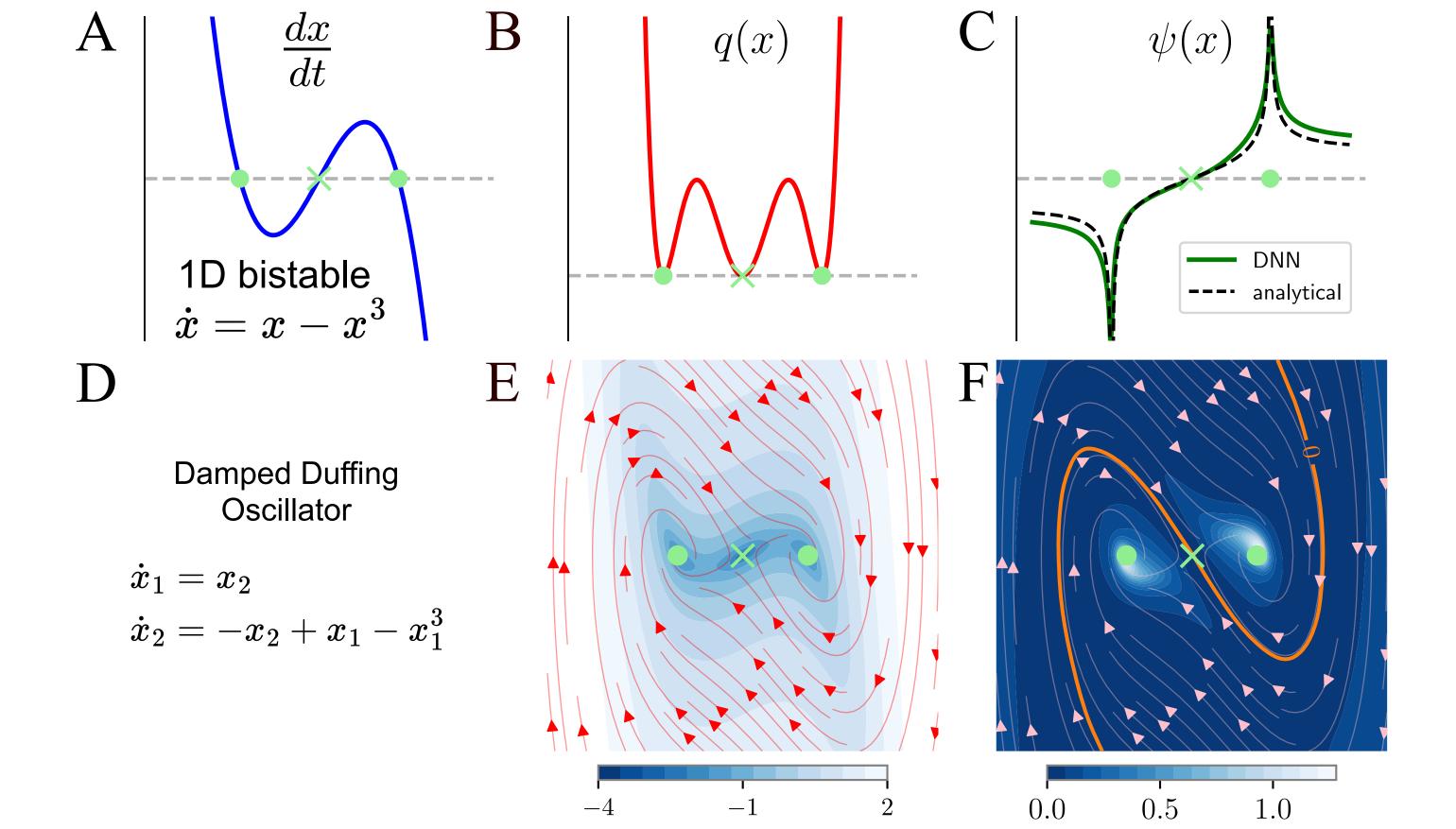
chain-rule

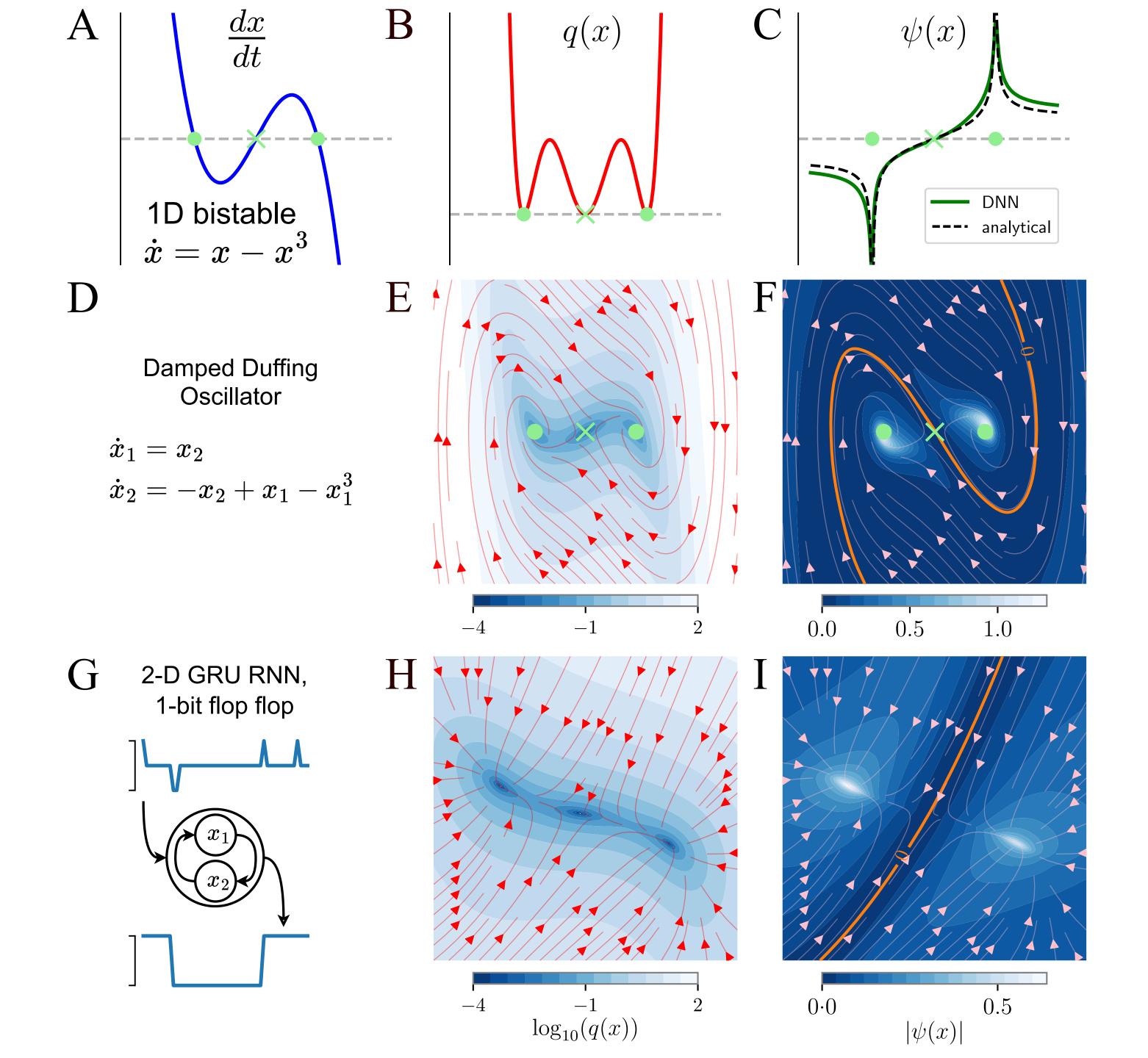
$$\mathcal{L}_{ ext{PDE}} = \mathbb{E}_{m{x}\sim p(m{x})}igg[
abla\psi(m{x})^T f(m{x}) - \lambda\,\psi(m{x})igg]^2$$
 partial differential equation (PDE)

Loss function







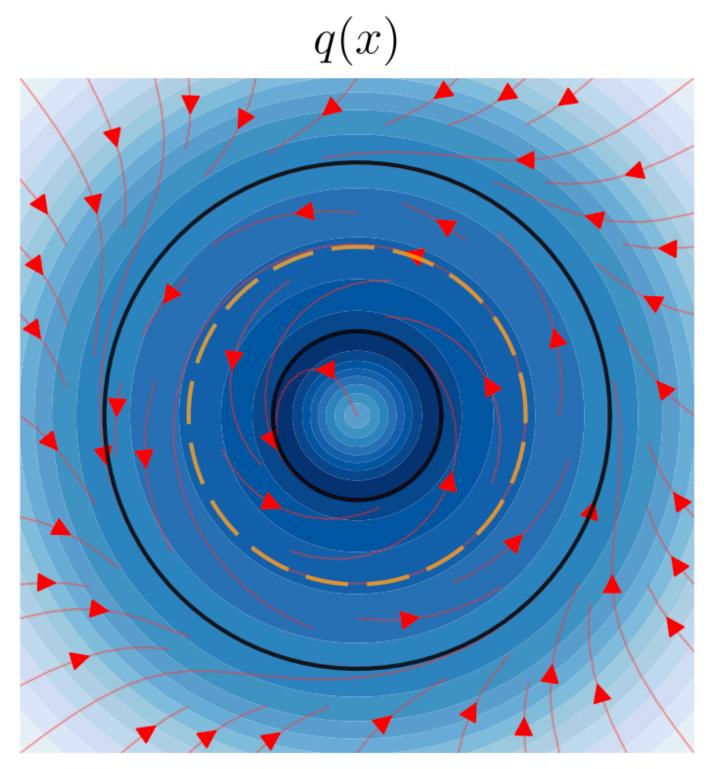


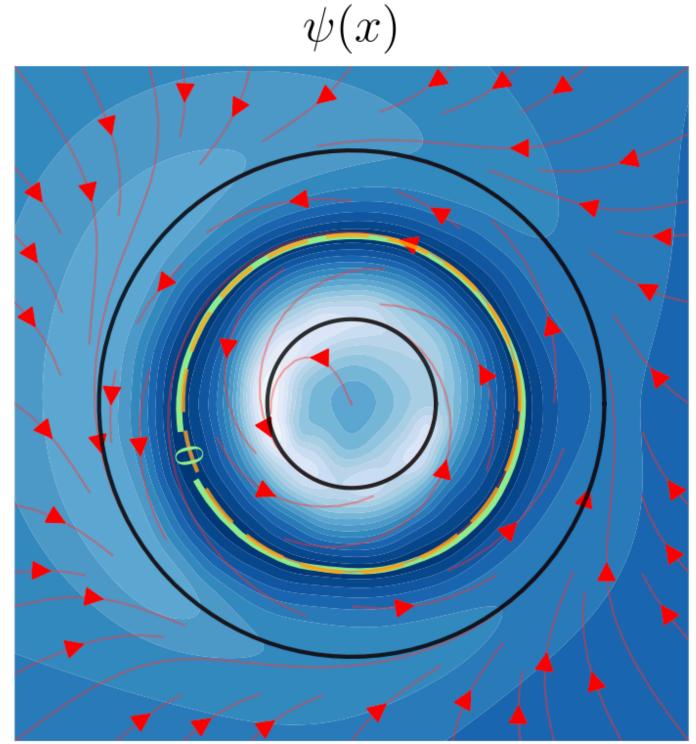
Bistable oscillations

No fixed points!

bistable oscillations

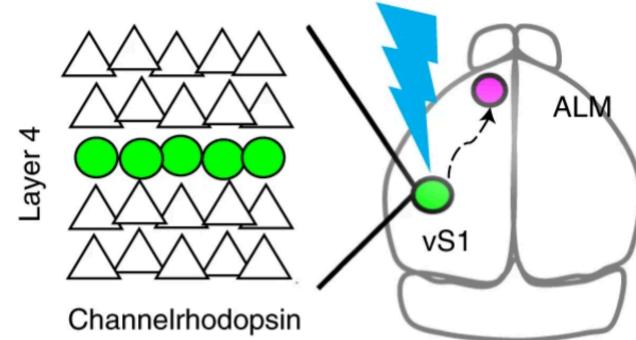
$$\dot{r}=(r-2)-(r-2)^3 \ \dot{ heta}=1$$





Attractor dynamics gate cortical information flow during decision-making

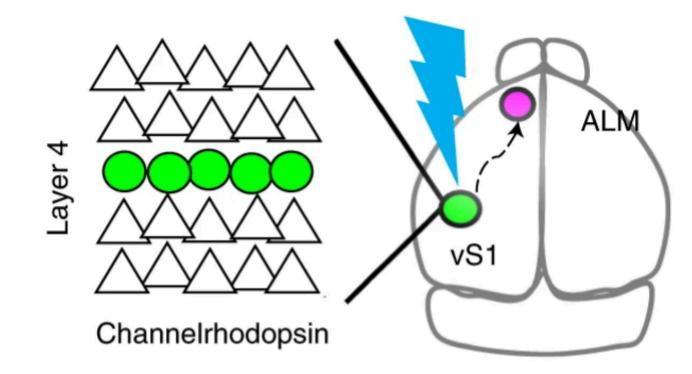
Arseny Finkelstein ^{1,3}, Lorenzo Fontolan ^{1,3}, Michael N. Economo¹, Nuo Li¹,², Sandro Romani ^{1,2} and Karel Svoboda ^{1,2}

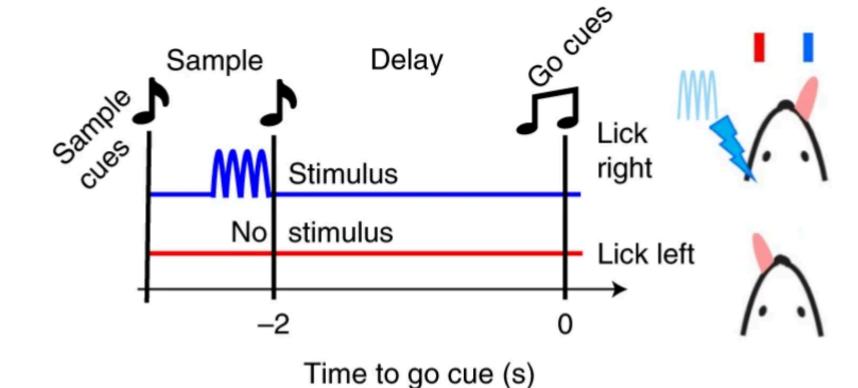


Check for updates

Attractor dynamics gate cortical information flow during decision-making

Arseny Finkelstein ^{1,3}, Lorenzo Fontolan ^{1,3}, Michael N. Economo¹, Nuo Li¹,², Sandro Romani ^{1 M} and Karel Svoboda ^{1 M}

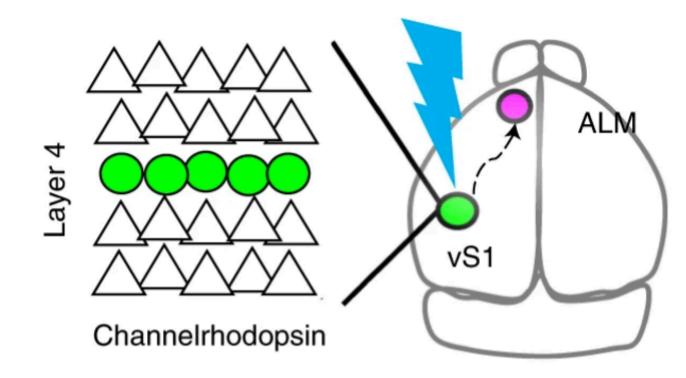


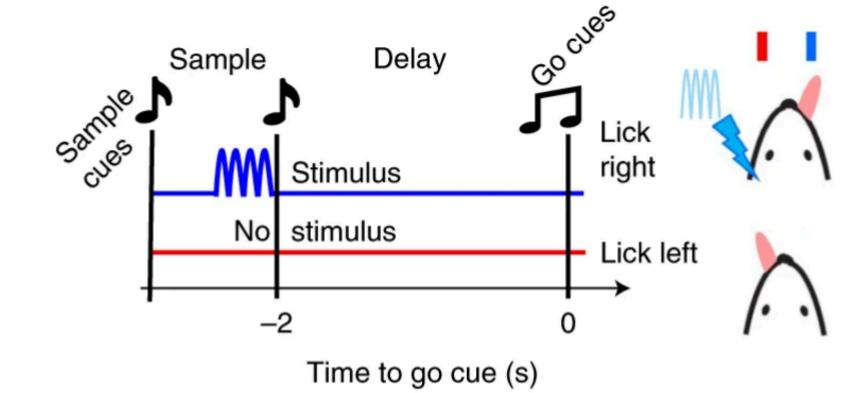


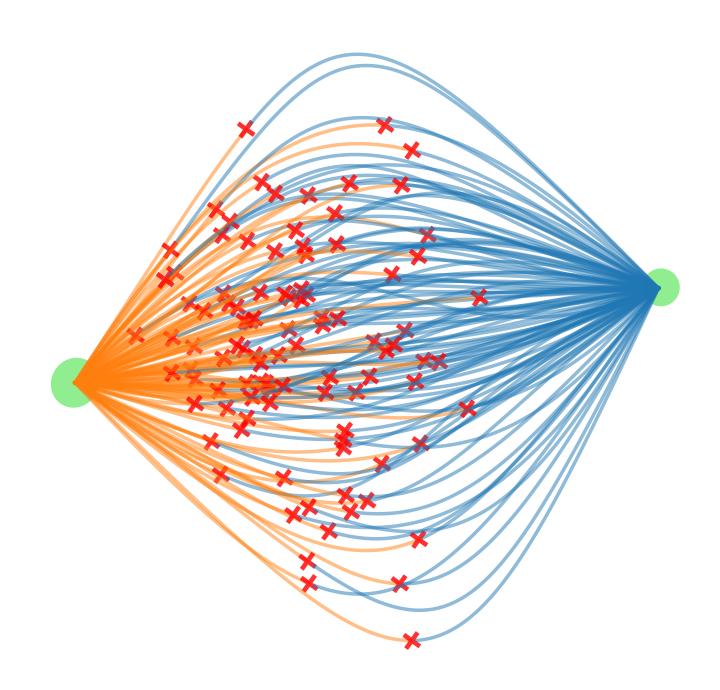
Check for updates

Attractor dynamics gate cortical information flow during decision-making

Arseny Finkelstein ^{1,3}, Lorenzo Fontolan ^{1,3}, Michael N. Economo¹, Nuo Li¹,², Sandro Romani ^{1 M} and Karel Svoboda ^{1 M}

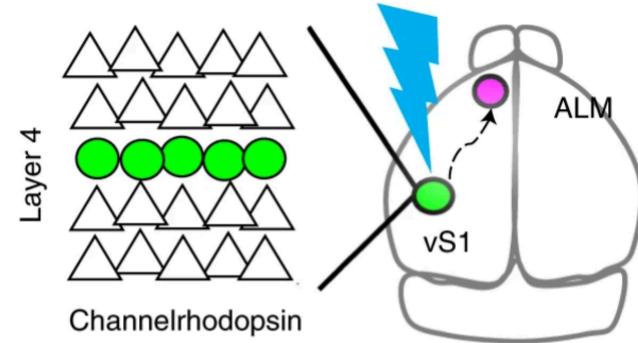


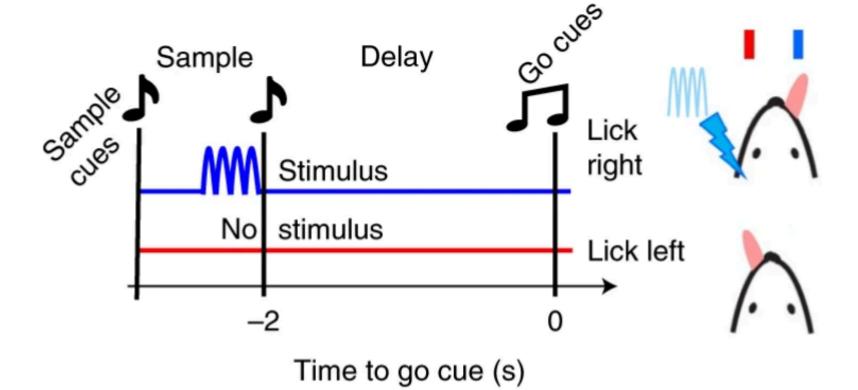


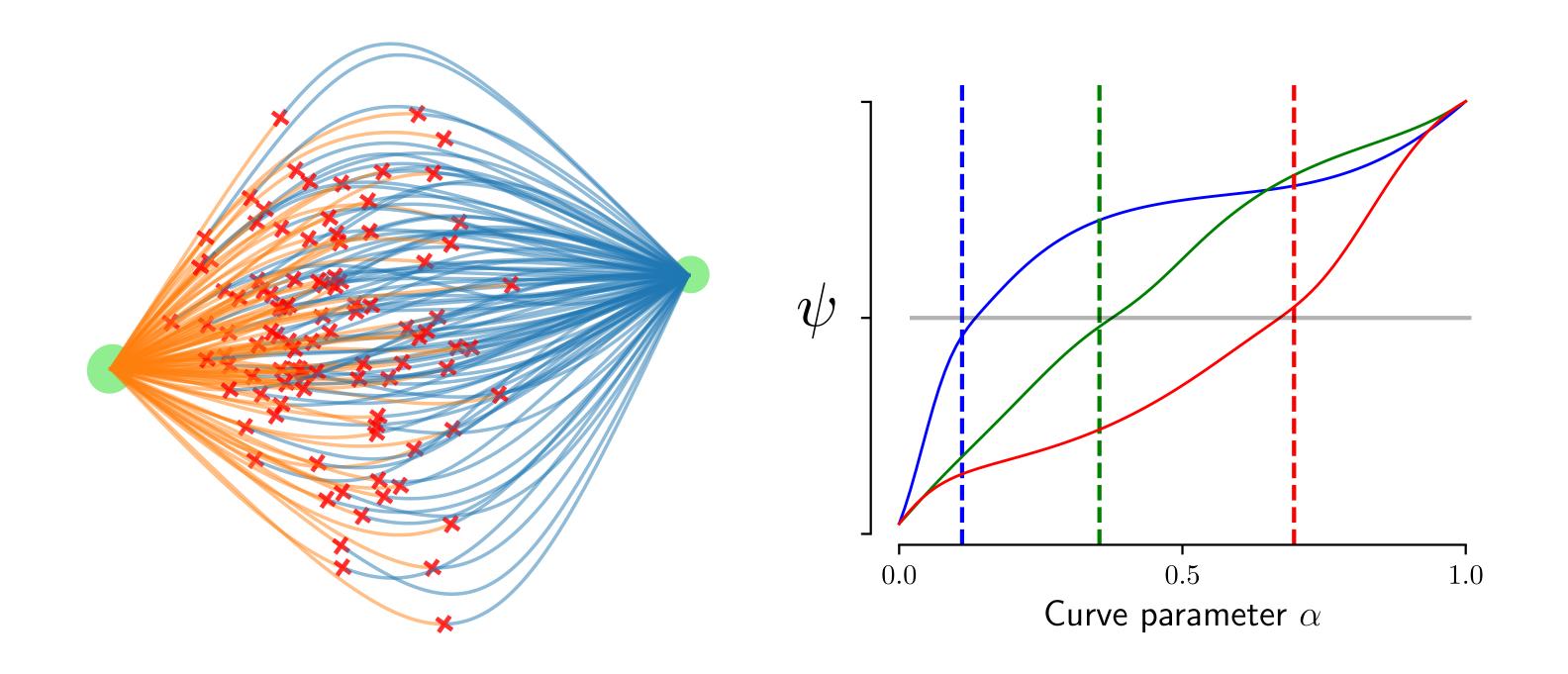


Attractor dynamics gate cortical information flow during decision-making

Arseny Finkelstein ^{1,3}, Lorenzo Fontolan ^{1,3}, Michael N. Economo¹, Nuo Li¹,², Sandro Romani ^{1,2} and Karel Svoboda ^{1,2}

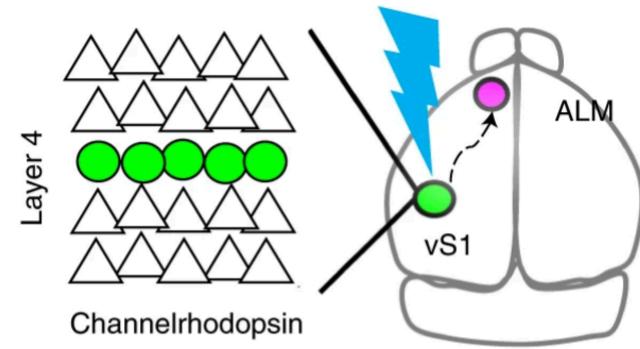




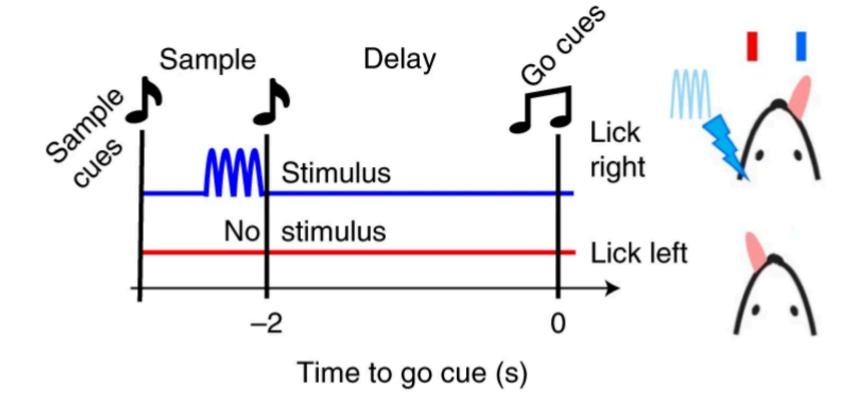


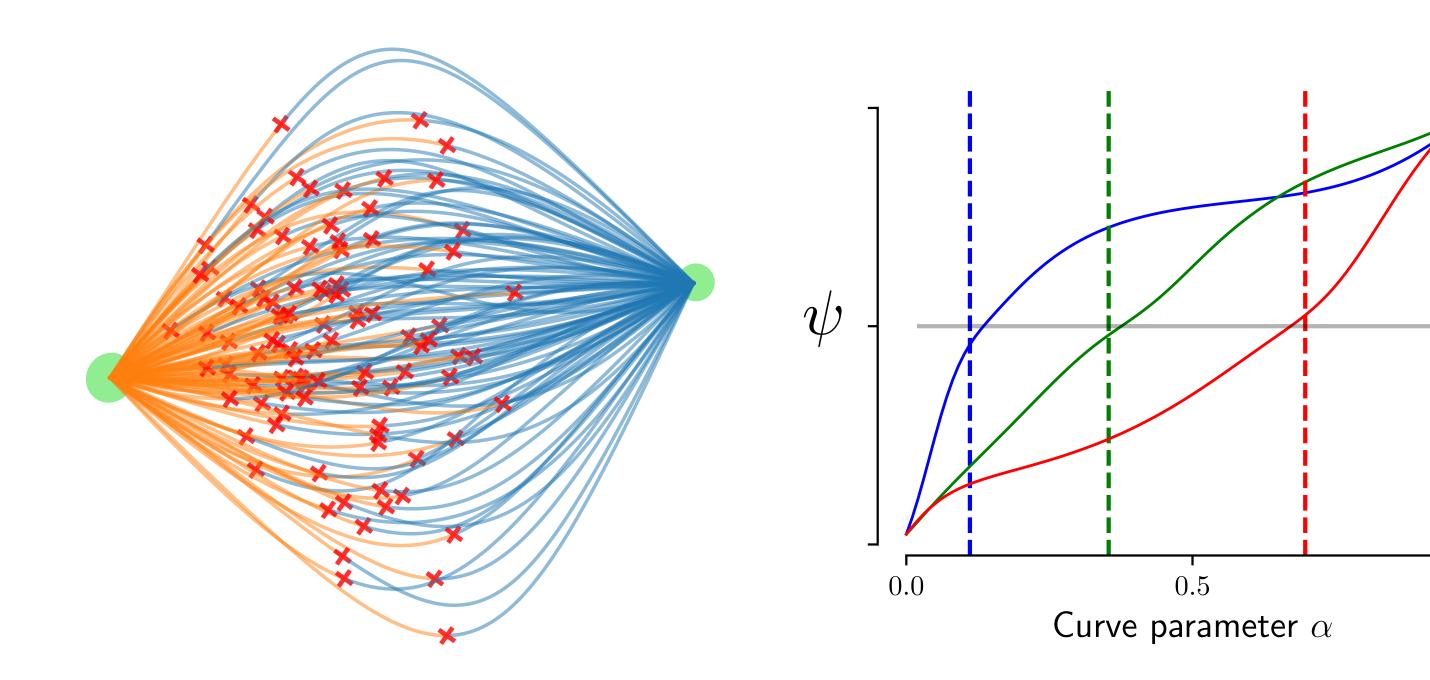
Attractor dynamics gate cortical information flow during decision-making

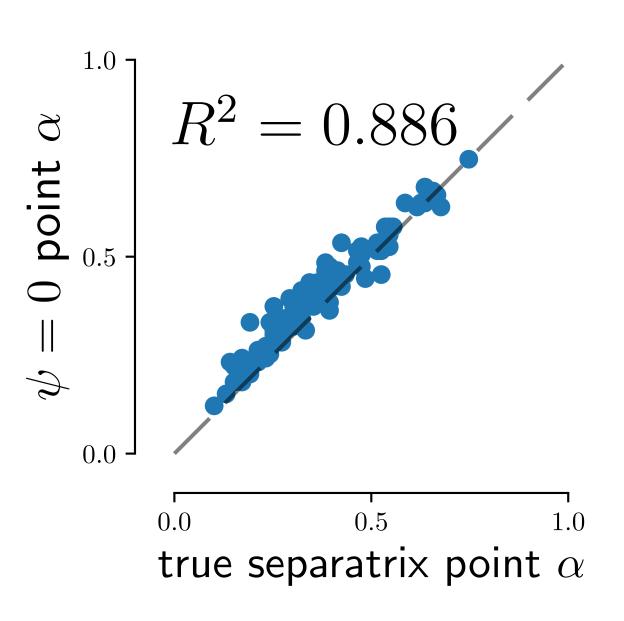
Arseny Finkelstein ^{1,3}, Lorenzo Fontolan ^{1,3}, Michael N. Economo¹, Nuo Li¹,², Sandro Romani ¹ and Karel Svoboda ¹ ■

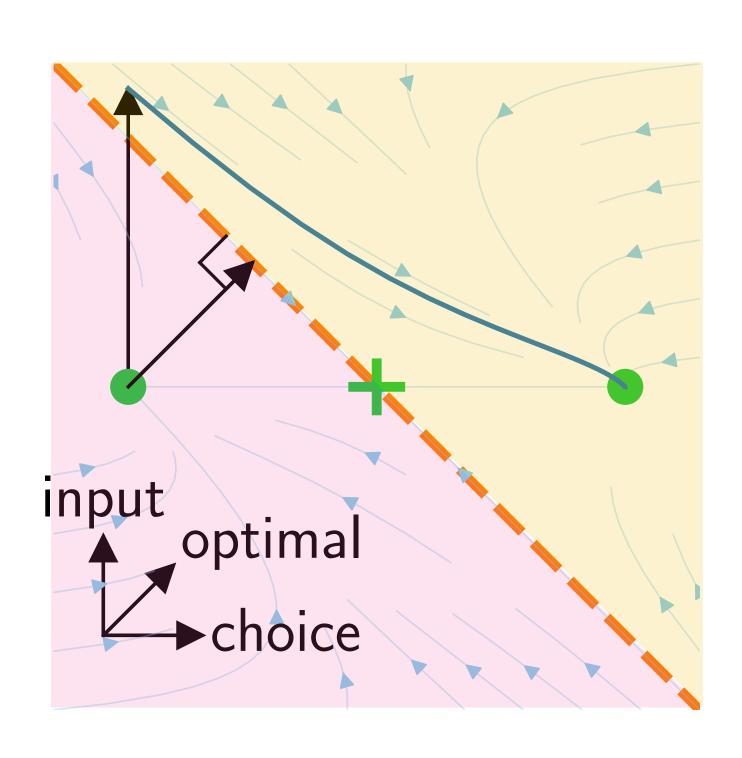


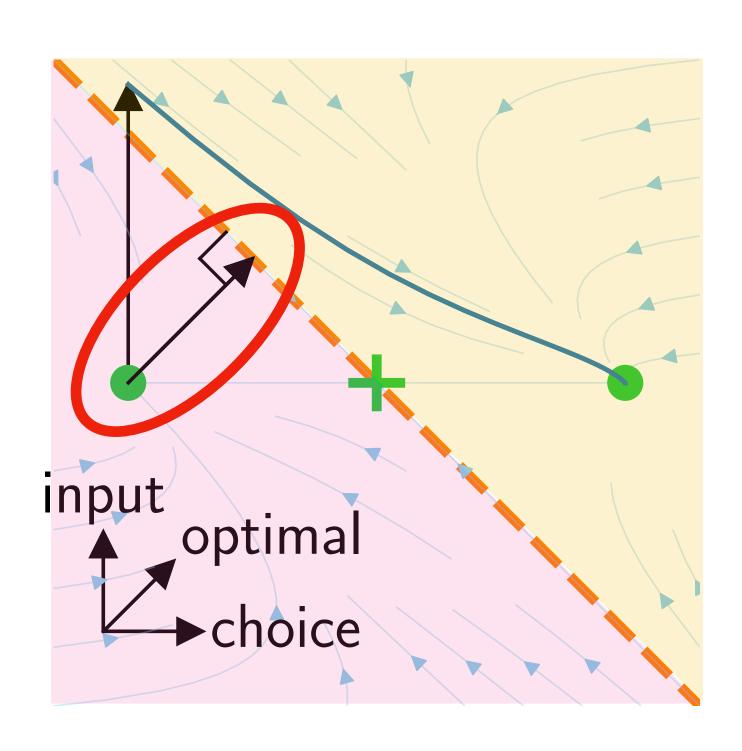
1.0

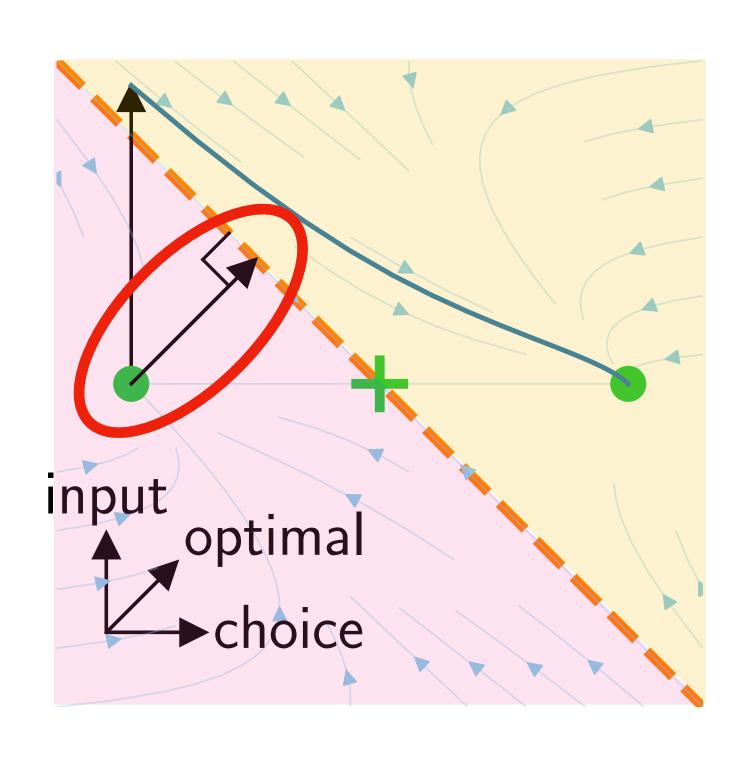


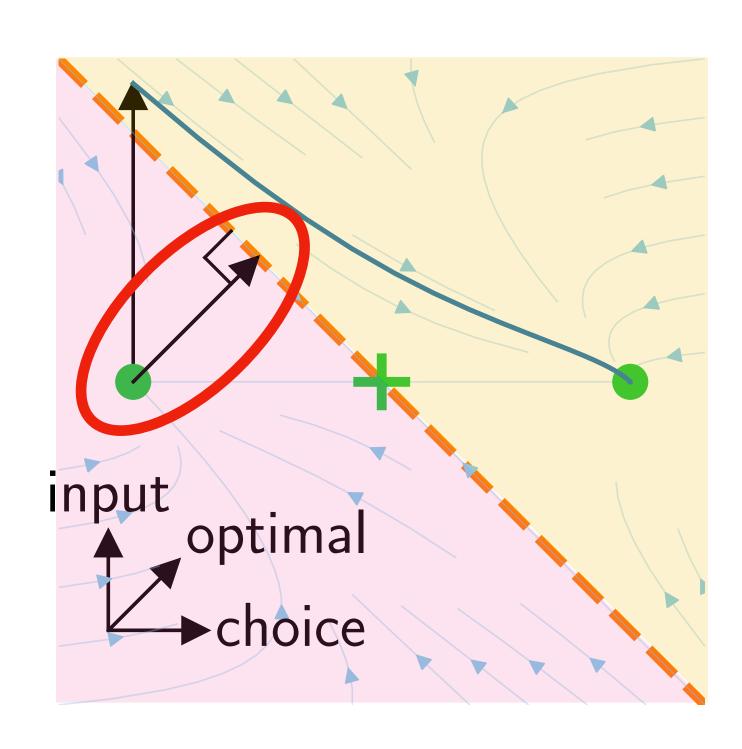




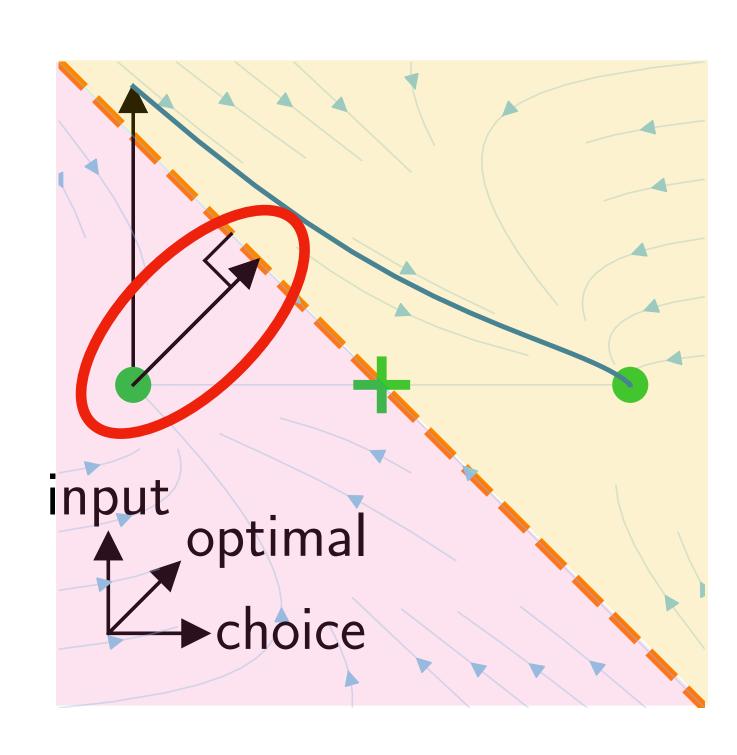




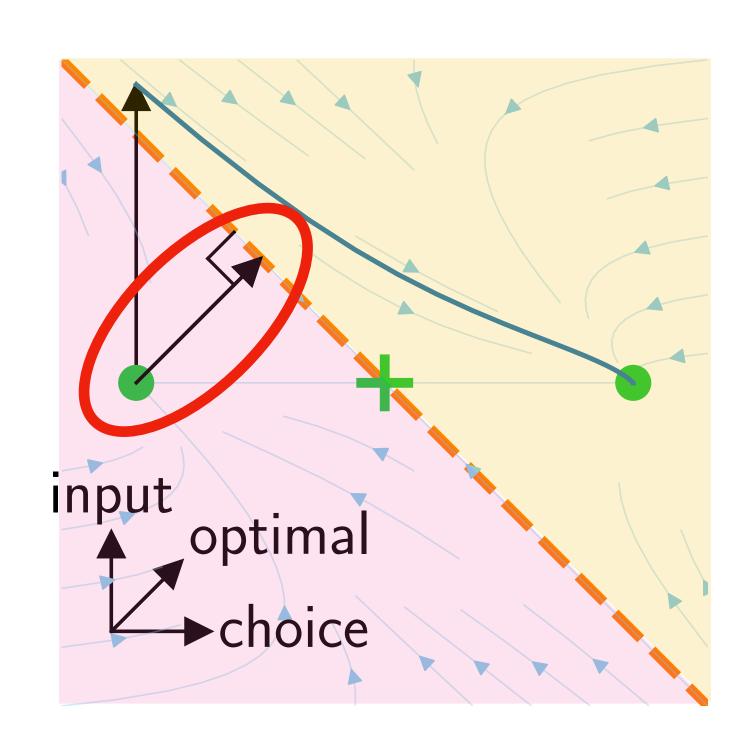




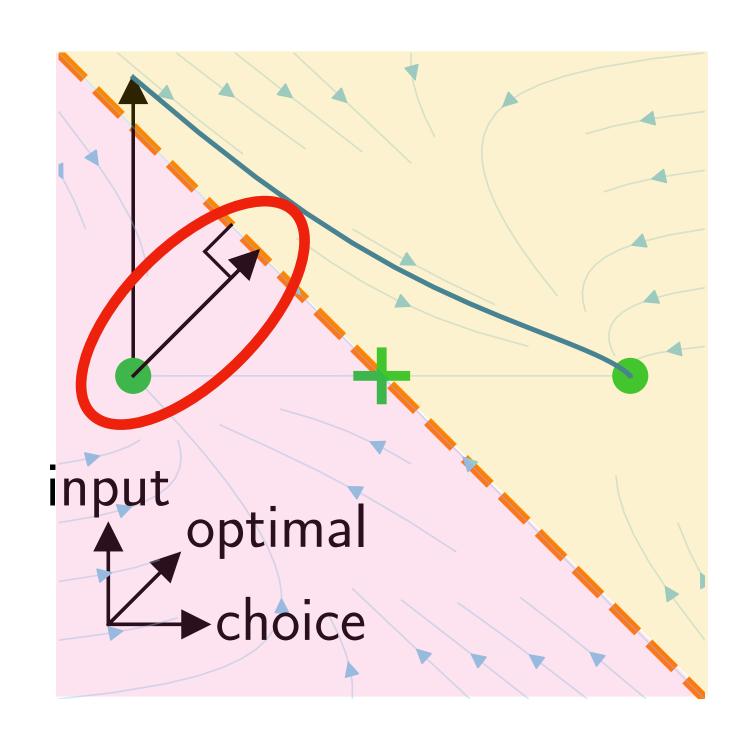
$$\Delta^* = \underset{\Delta}{\operatorname{arg\,min}} \|\Delta\|_2^2$$
 subject to $|\psi(x_{\text{base}} + \Delta)| = 0$.



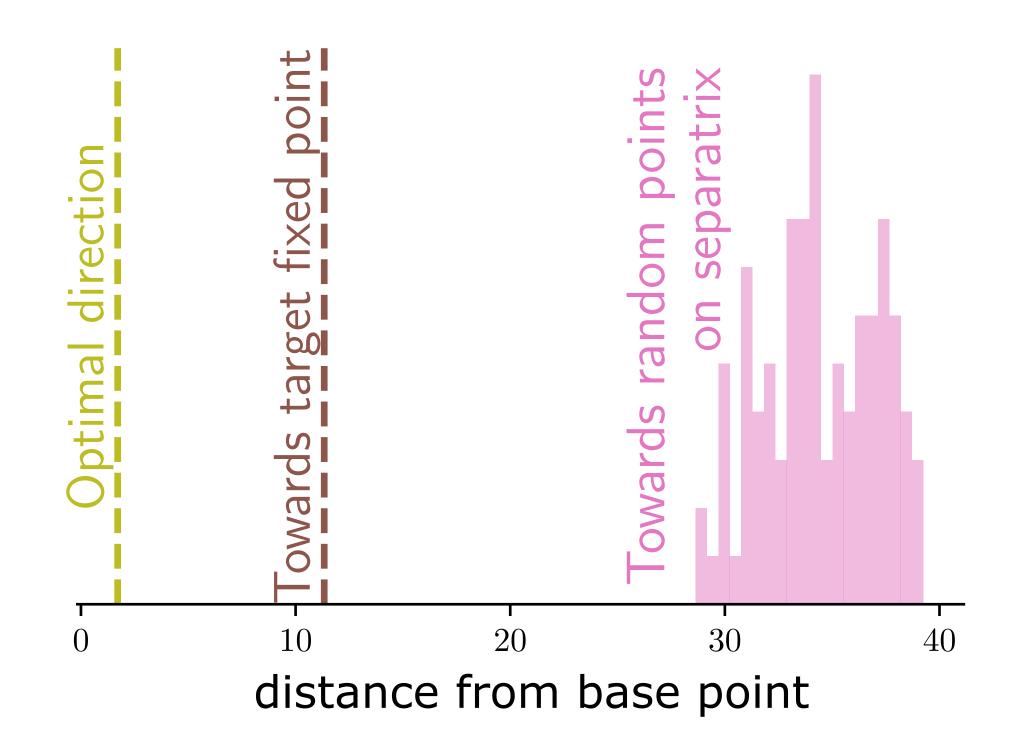
$$\Delta^* = \mathop{\arg\min}_{\Delta} \|\Delta\|_2^2 \quad \text{subject to} \quad |\psi(x_{\text{base}} + \Delta)| = 0.$$
 minimise norm of perturbation



$$\Delta^* = \mathop{\arg\min}_{\Delta} \|\Delta\|_2^2 \quad \text{subject to} \quad |\psi(x_{\text{base}} + \Delta)| = 0.$$
 minimise final point on separatrix norm of perturbation



$$\Delta^* = \mathop{\arg\min}_{\Delta} \|\Delta\|_2^2 \quad \text{subject to} \quad |\psi(x_{\text{base}} + \Delta)| = 0.$$
 minimise final point on separatrix norm of perturbation



 Propose a framework to find separatrices in high dimensional nonlinear dynamical systems

- Propose a framework to find separatrices in high dimensional nonlinear dynamical systems
- How? Map the system to a canonical 1D system

- Propose a framework to find separatrices in high dimensional nonlinear dynamical systems
- How? Map the system to a canonical 1D system
- Demonstrate the method on variety of systems including data-trained RNNs

- Propose a framework to find separatrices in high dimensional nonlinear dynamical systems
- How? Map the system to a canonical 1D system
- Demonstrate the method on variety of systems including data-trained RNNs
- Use it to design optimal perturbations

Thanks!

Discussions: Matthijs Pals, Yoav Ger, Aviv Ratzon

PhD Advisor and co-author: Omri Barak

https://github.com/KabirDabholkar/separatrix_locator

Try it yourself! Reach out to us!

Thanks!

Discussions: Matthijs Pals, Yoav Ger, Aviv Ratzon

PhD Advisor and co-author: Omri Barak

https://github.com/KabirDabholkar/separatrix_locator

Try it yourself! Reach out to us!