

Federated Learning with Differential Privacy for End-to-End ASR: Benchmarks, Adaptive Optimizers and Gradient Clipping

Shams ¹*
Azam

Vitaly ¹ Feldman

Jan ¹ Silovsky

Kunal ¹ Talwar

Chris ² Brinton

Tatiana 1 *
Likhomanenko

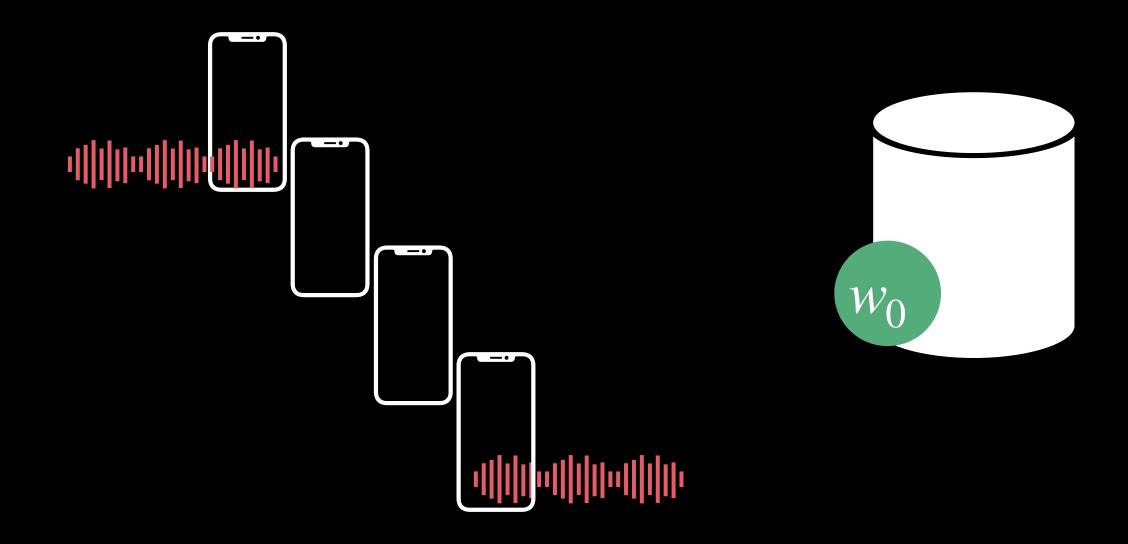
Outline

- Introduction
- Problem Statement
- Contributions
- Key Takeaways

ntrocuction

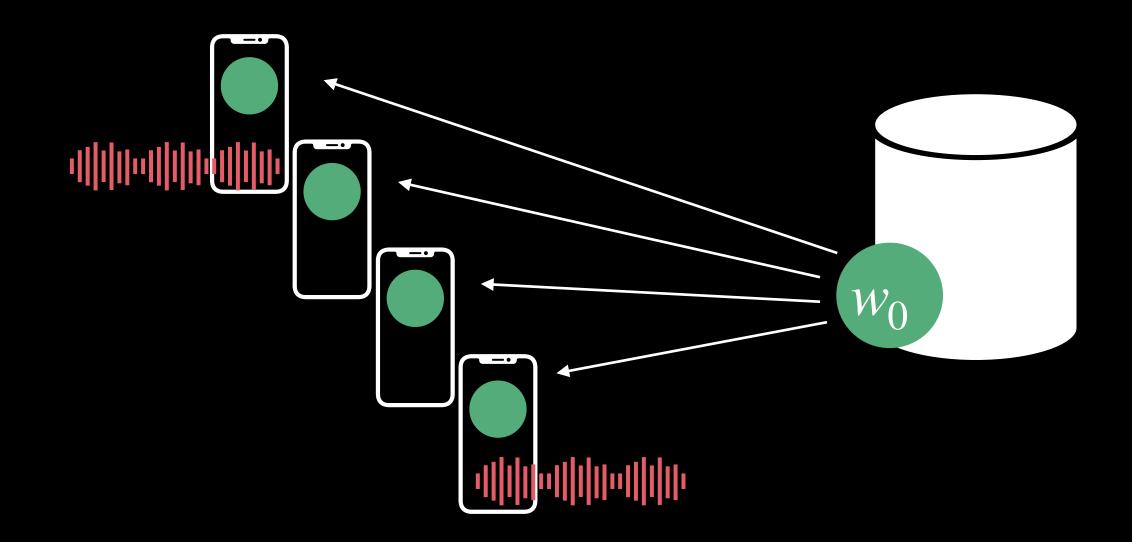
Terminology and Framework

Initialize server model



Initialize server model

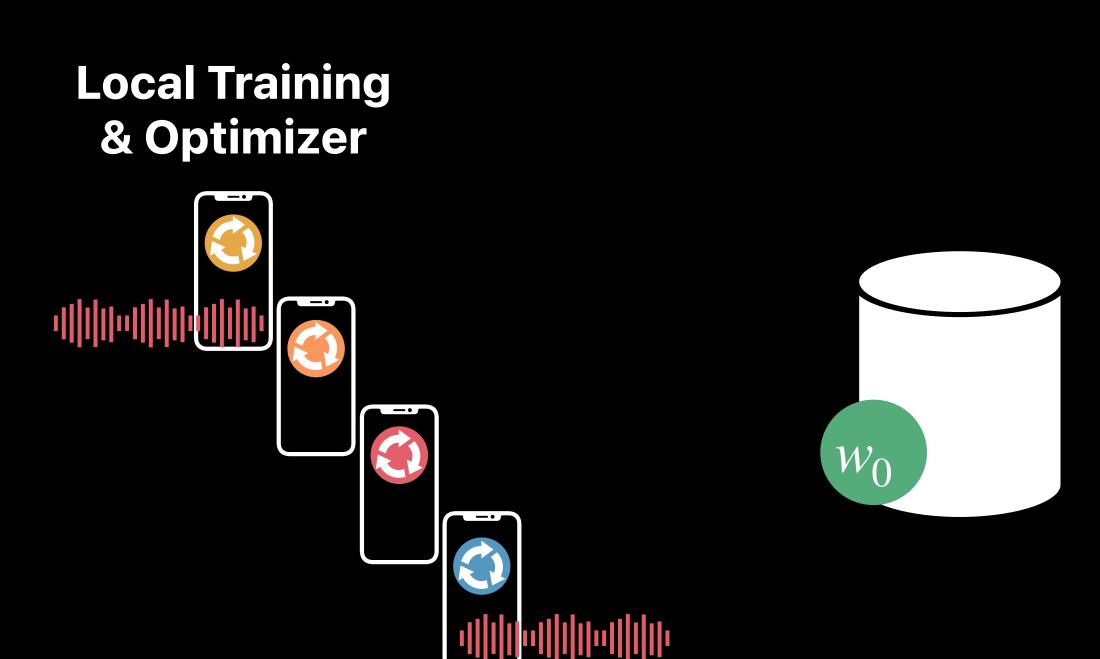
Broadcast server model to a subset of devices



Initialize server model

Broadcast server model to a subset of devices

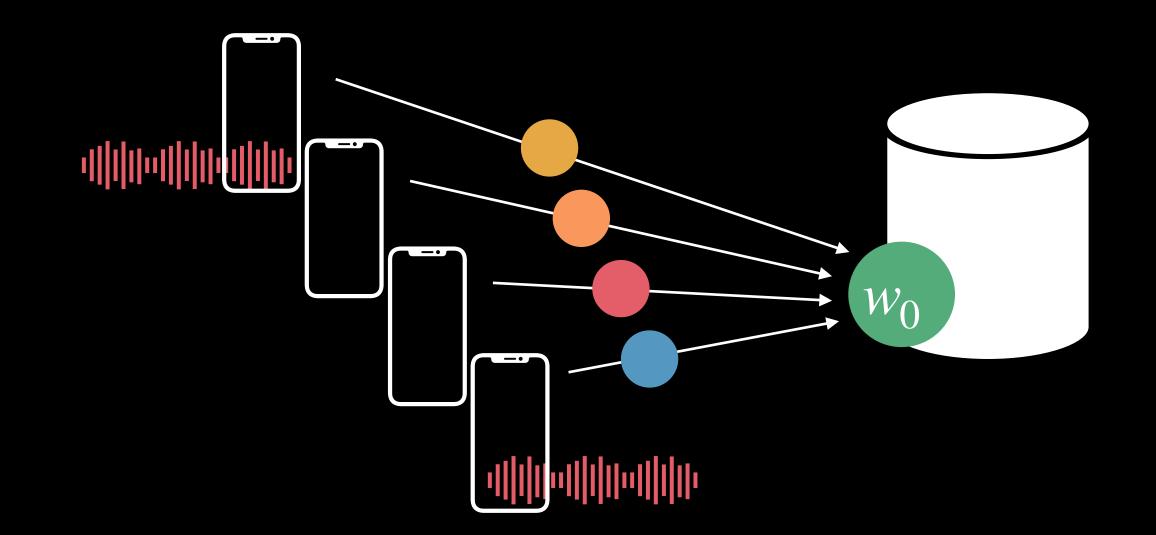
Train each local model on client data



Initialize server model

Broadcast server model to a subset of devices

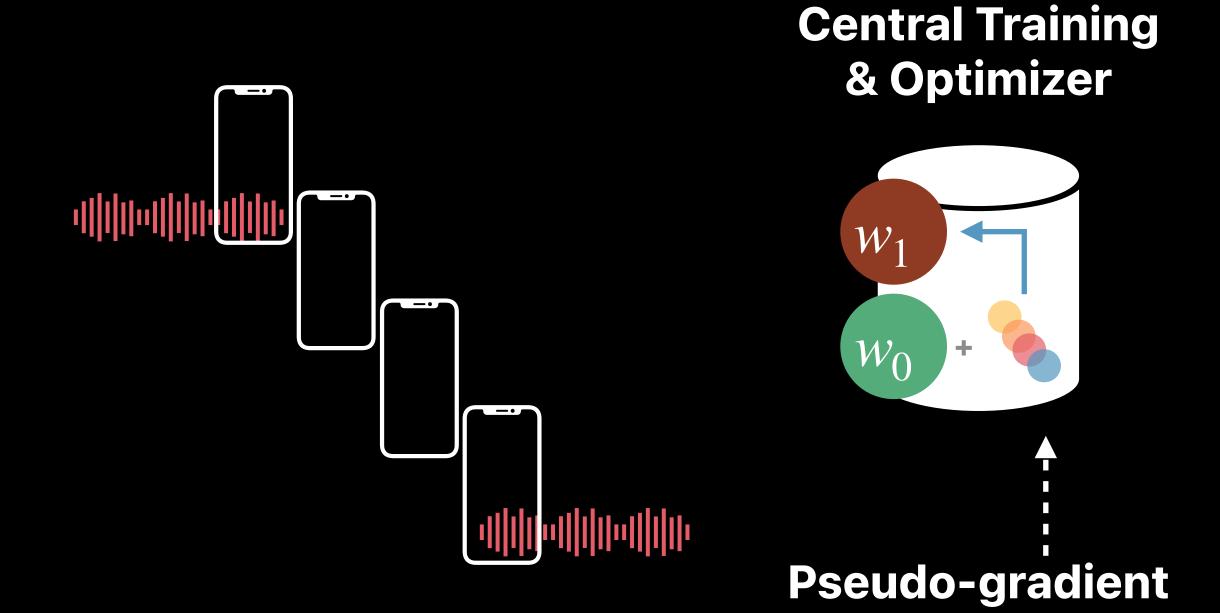
- Train each local model on client data
- Clients share the model updates back to server



Initialize server model

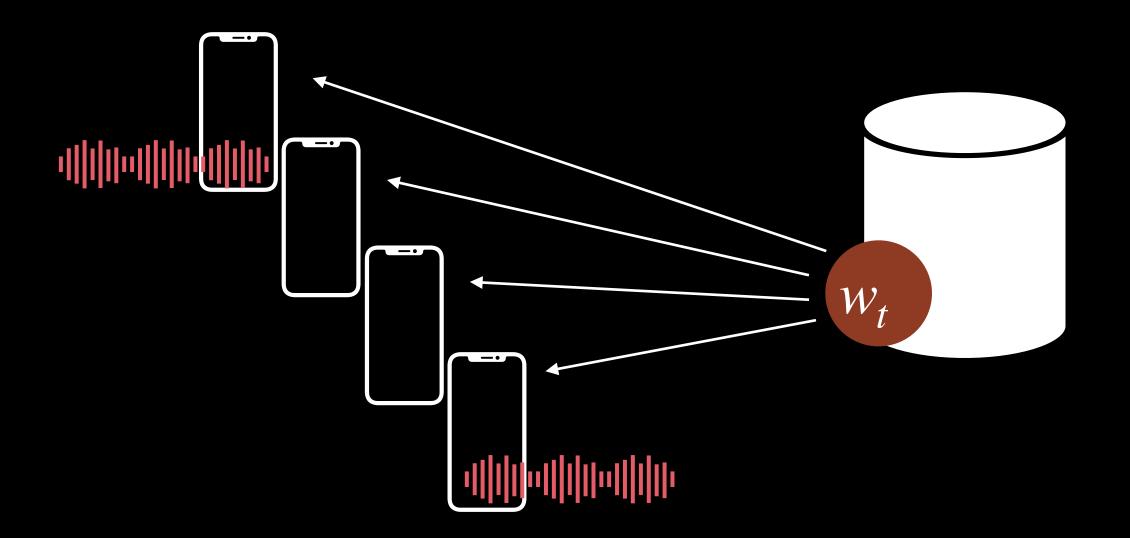
Broadcast server model to a subset of devices

- Train each local model on client data
- Clients share the model updates back to server
- Update server model by averaging clients updates

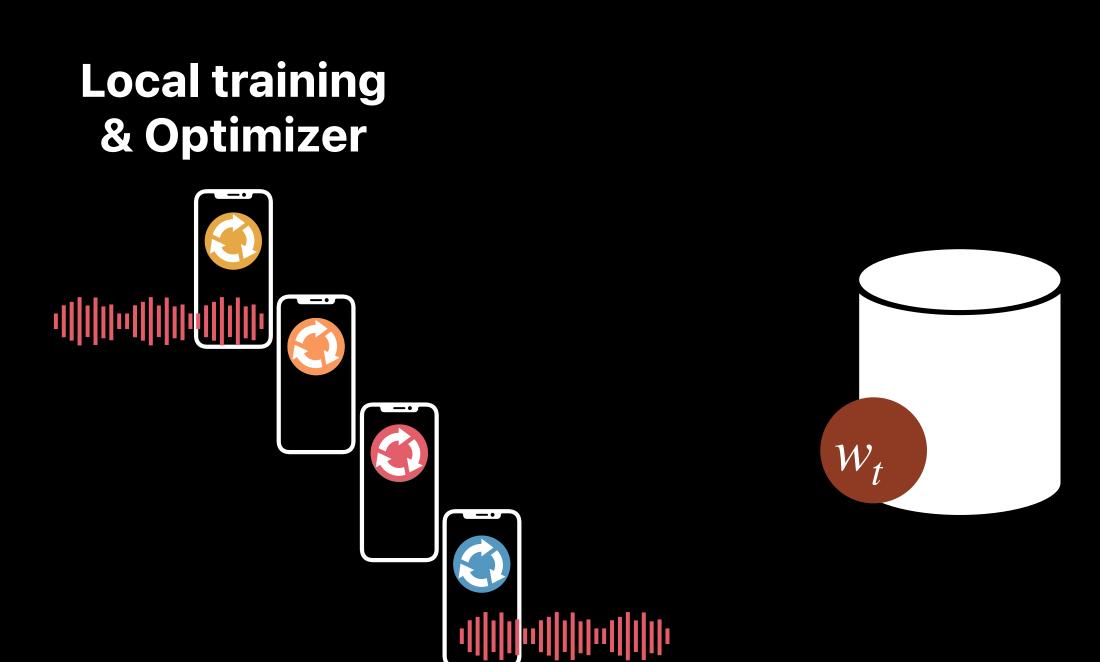


- Initialize server model
- For every central training step
 - Broadcast server model to a subset of devices

- Train each local model on client data
- Clients share the model updates back to server
- Update server model by averaging clients updates



- Initialize server model
- For every central training step
 - Broadcast server model to a subset of devices
 - ► Train for multiple epochs on each client [1]
 - Train each local model on client data
 - Clients share the model updates back to server
 - Update server model by averaging clients updates



Problem Statement

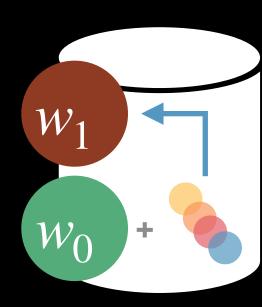
Prior Works, Differential Privacy, and Model Size

Federated Learning for ASR

Prior works

- Initialize server model
- For every central training step
 - Broadcast server model to a subset of devices
 - Train for multiple epochs on each client
 - Train each local model on client data





- Clients share the model updates back to server
- Update server model by averaging clients updates

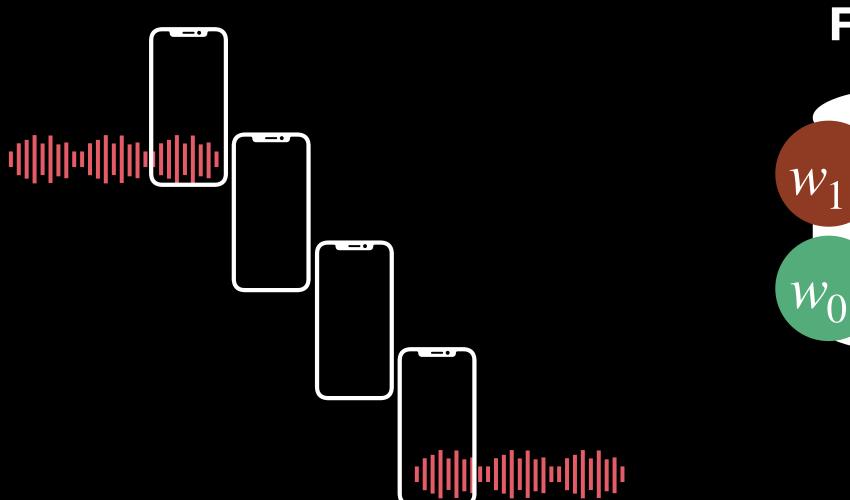
Does not converge!! [1]

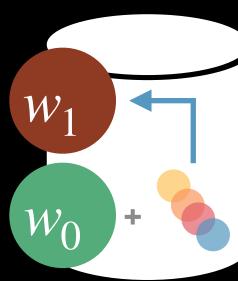
Federated Learning for ASR

Prior works

- Initialize server model with pre-trained model [1]
- For every central training step
 - Broadcast server model to a subset of devices
 - Train for multiple epochs on each client
 - Train each local model on client data

- Clients share the model updates back to server
- Update server model by averaging clients updates



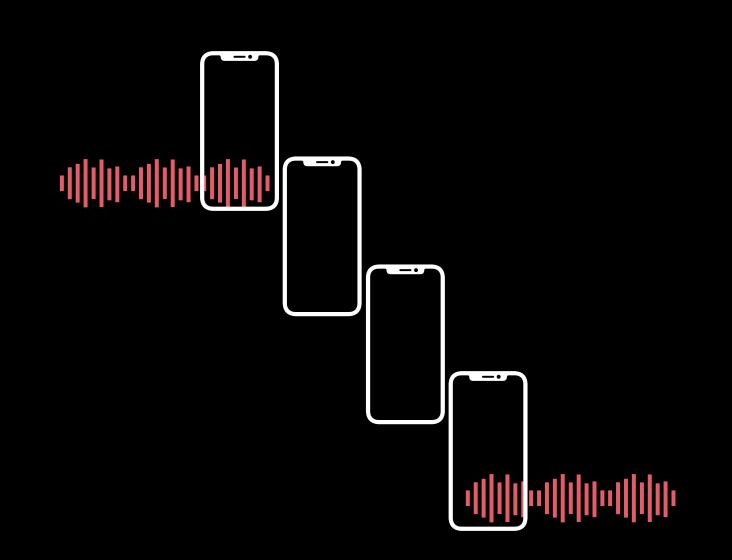


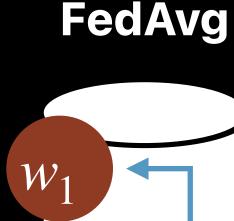
Federated Learning for ASR

Prior works

- Initialize server model with pre-trained model [1]
- For every central training step (T=200k) [2]
 - Broadcast server model to a subset of devices
 - Train for multiple epochs on each client
 - Train each local model on client data

- Clients share the model updates back to server
- Update server model by averaging clients updates

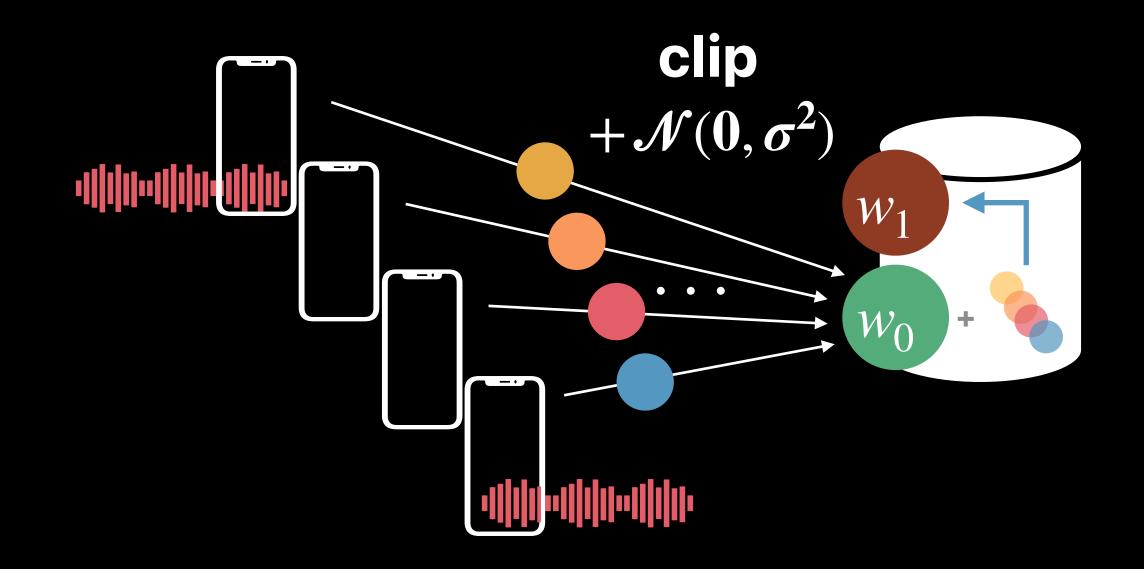




Private Federated Learning for ASR

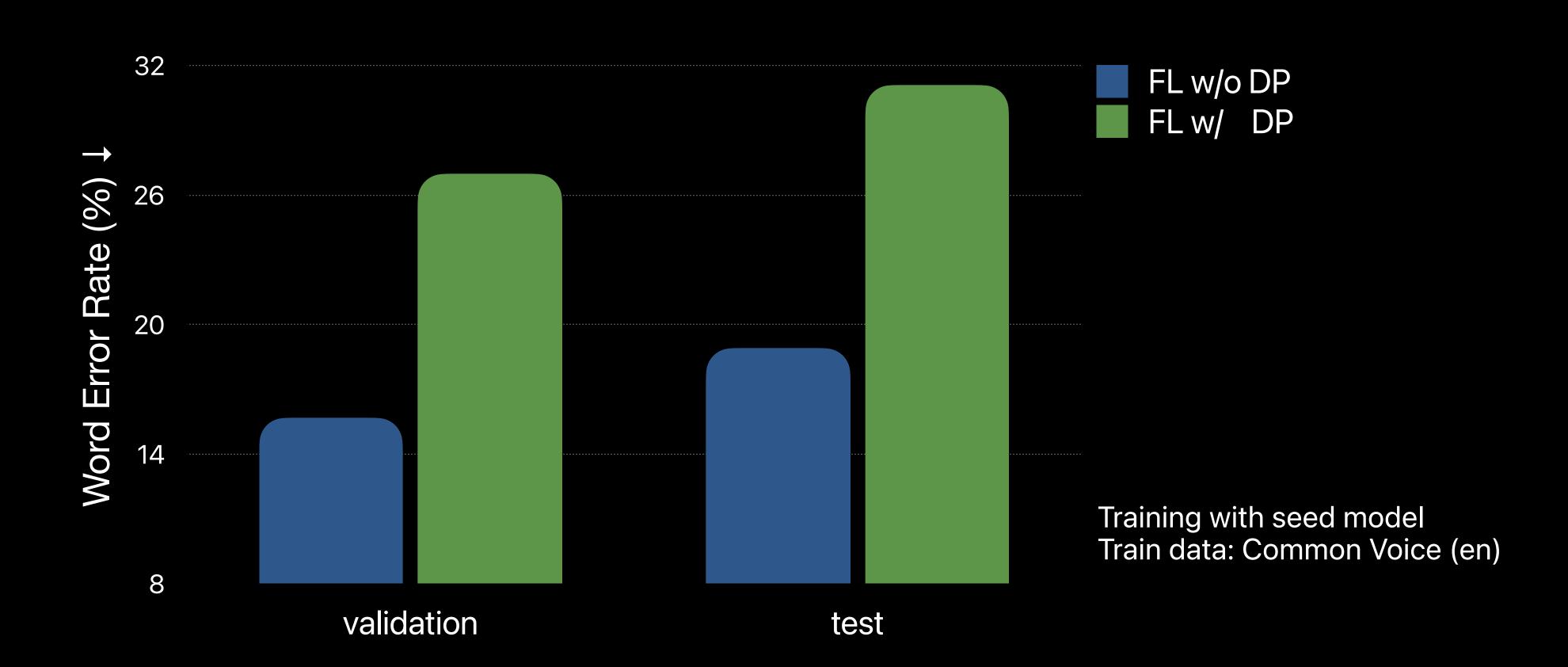
Our Setup

- Initialize server model from scratch
- ► For every central training step (T=2k)
 - Broadcast server model to a subset of devices
 - Train for multiple epochs on each client
 - Train each local model on client data
 - Clip and add noise to model updates for DP
 - Clients share the model updates back to server
 - Update server model using pseudo-gradients
 & adaptive optimization [1]



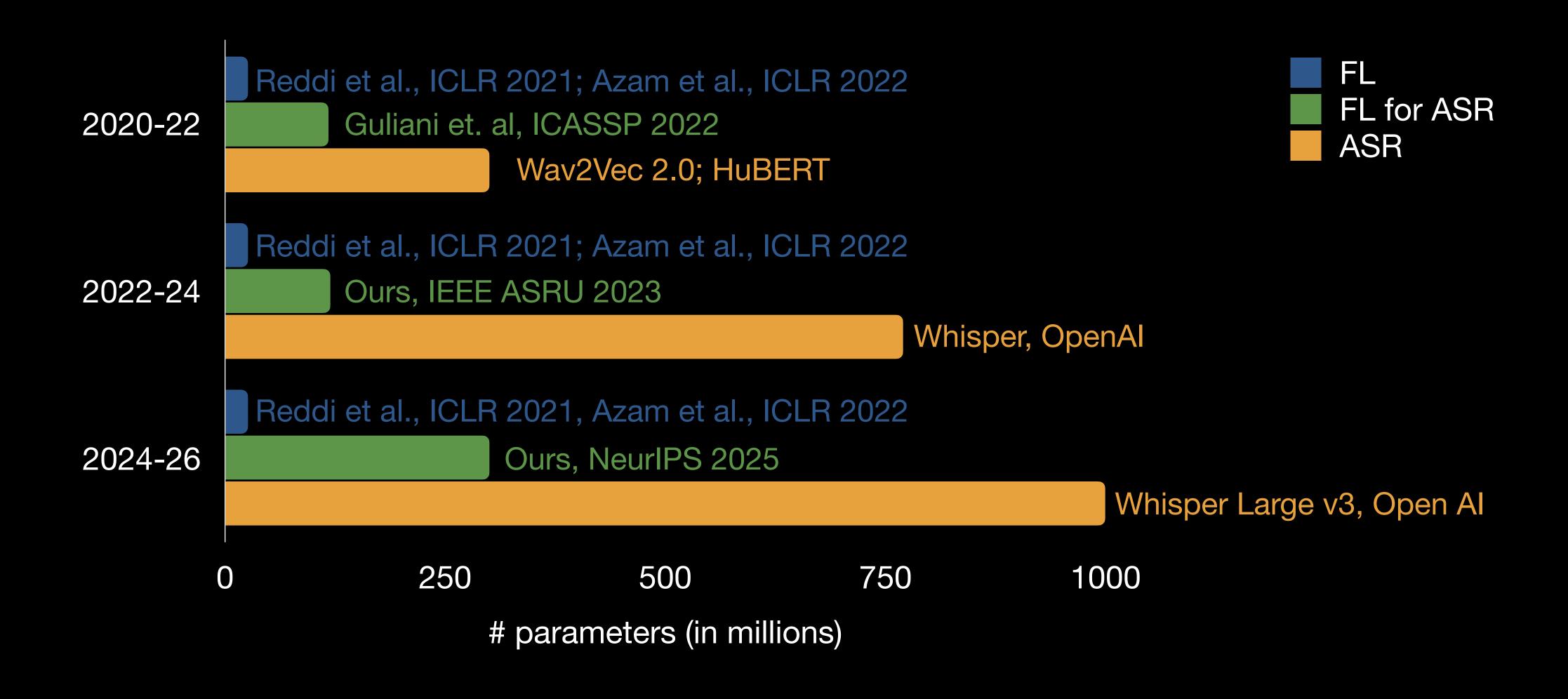
FL Training with Differential Privacy

Adding noise degrades performance significantly as expected



Model Size Comparison

Model sizes in FL are several orders of magnitude smaller than SoTA ASR models



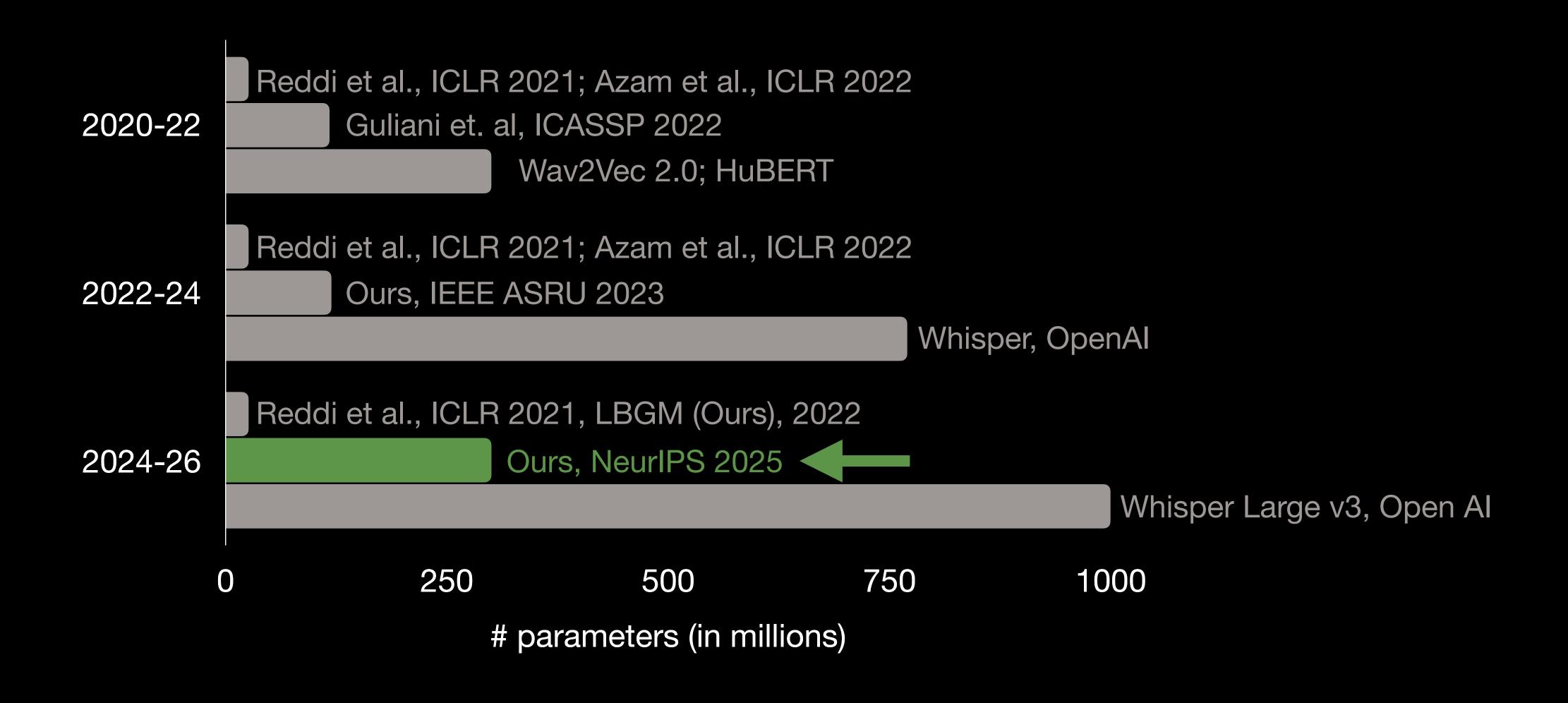
Why Does Model Size Matter?

Different heuristics for optimization of larger models

- Adaptive optimization is necessary; SGD underperforms for same compute
 - Hessian heterogeneity explains why coordinate-wise adaptive descent is needed
- · Adaptive optimization needs warm-up schedule, pre-layer normalization, clipping, etc.
- •In the context of FL:
 - ·Gradient heterogeneity across clients further aggravated across some layers
 - ·Warmup is more essential given client heterogeneity, especially at the start of training
 - Larger models can easily overfit on limited local data
 - •Communication bottleneck and memory requirements when using Adam, LAMB, etc.
 - ·How we clip and apply noise in the context of Differential Privacy

Model Size Comparison

Model sizes in FL are several orders of magnitude smaller than SoTA ASR models

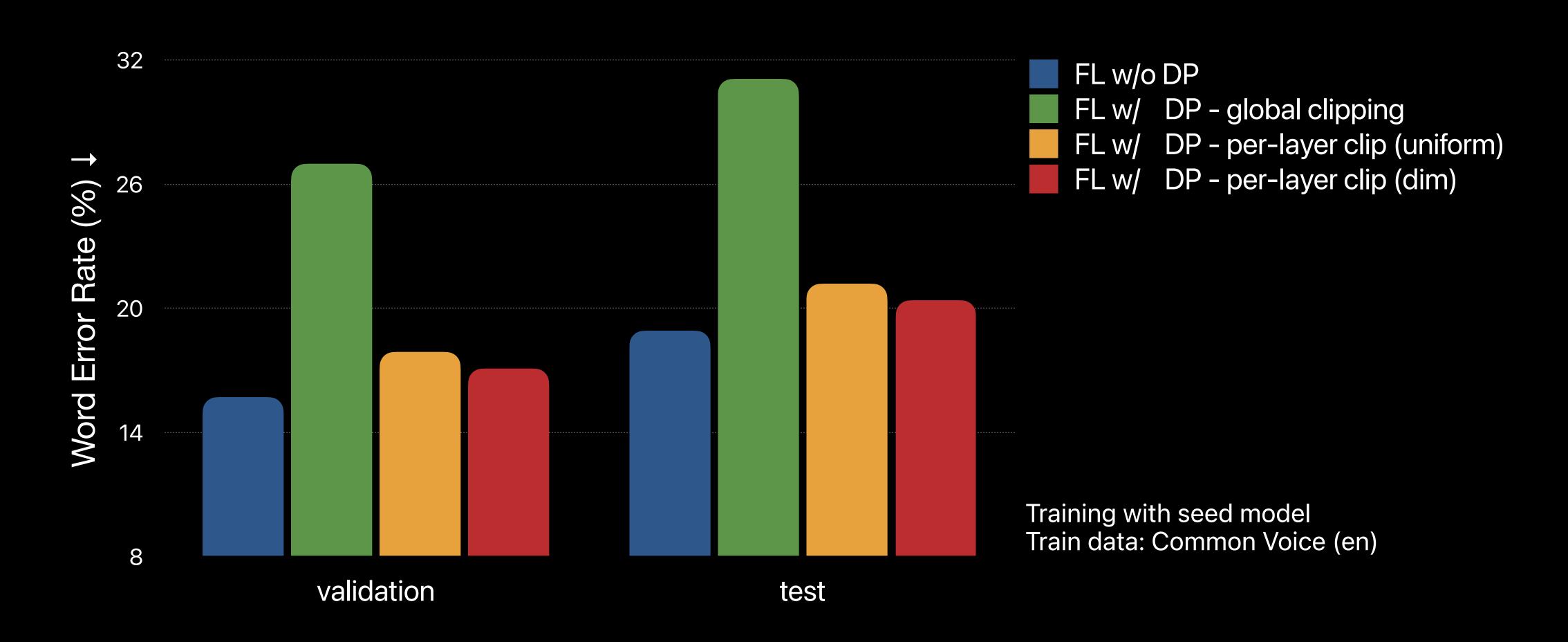


Contributions

Domain Shift, Per-Layer Clipping, and Theoretical Analysis

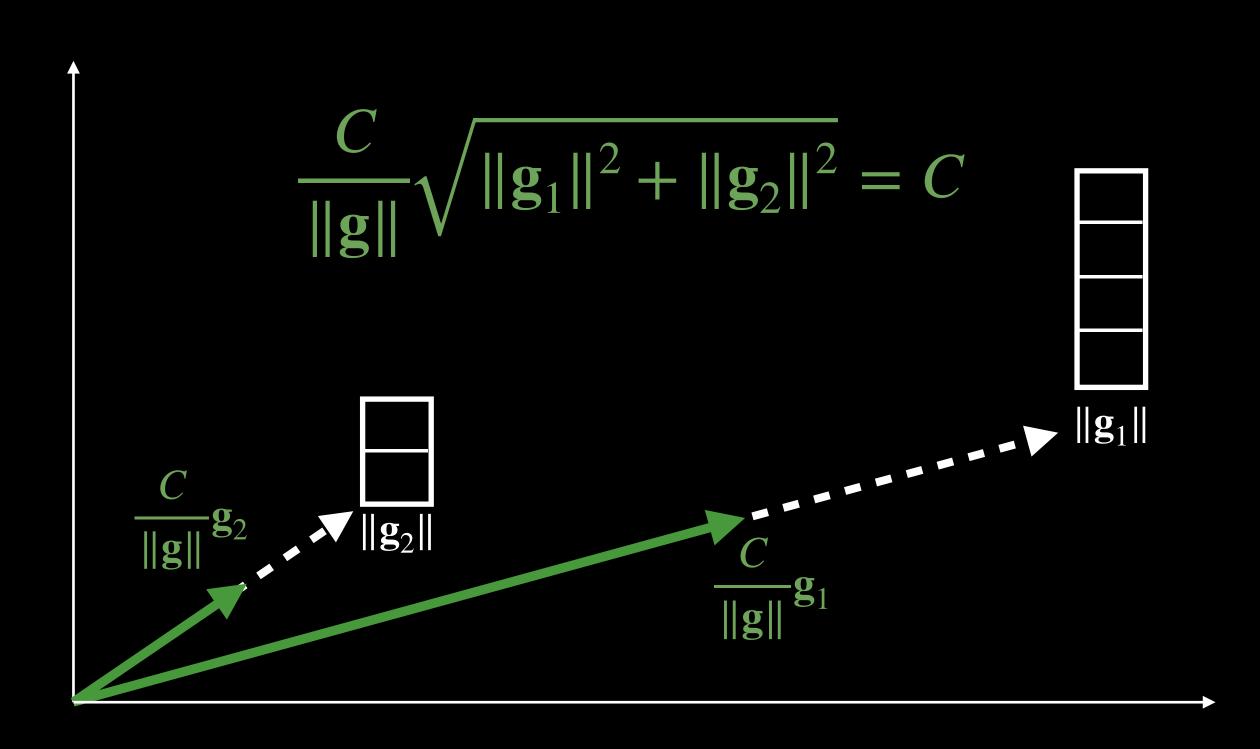
Enabling FL Training with Differential Privacy

Per-layer clipping extracts better performance for same privacy budget.



Why is Per-Layer Clipping Important?

Formulation of global ("flat") clipping

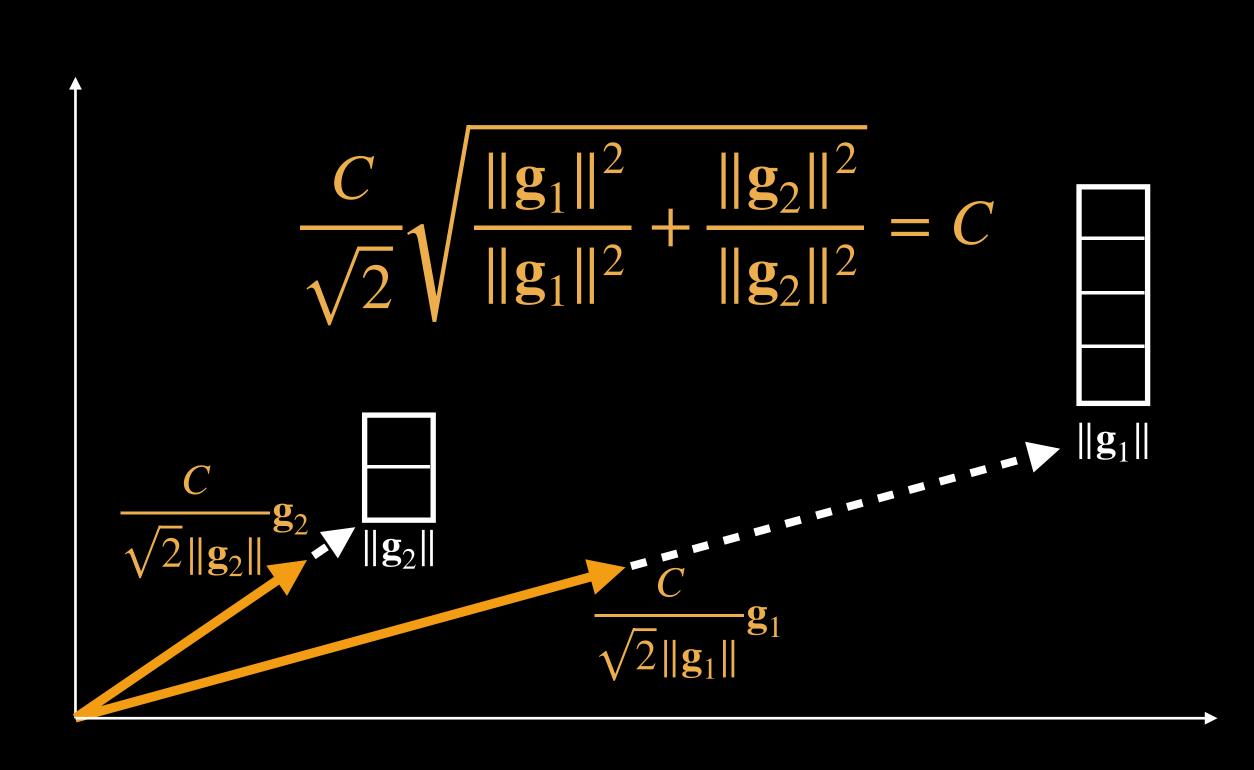


$$Clip(\mathbf{g}, C) \leftarrow \frac{C}{\|\mathbf{g}\|} \mathbf{g}, \text{ if } \|\mathbf{g}\| > C$$

$$\|\mathbf{g}\| = \sqrt{\|\mathbf{g_1}\|^2 + \|\mathbf{g_2}\|^2}$$

Why is Per-Layer Clipping Important?

Formulation of uniform per-layer clipping

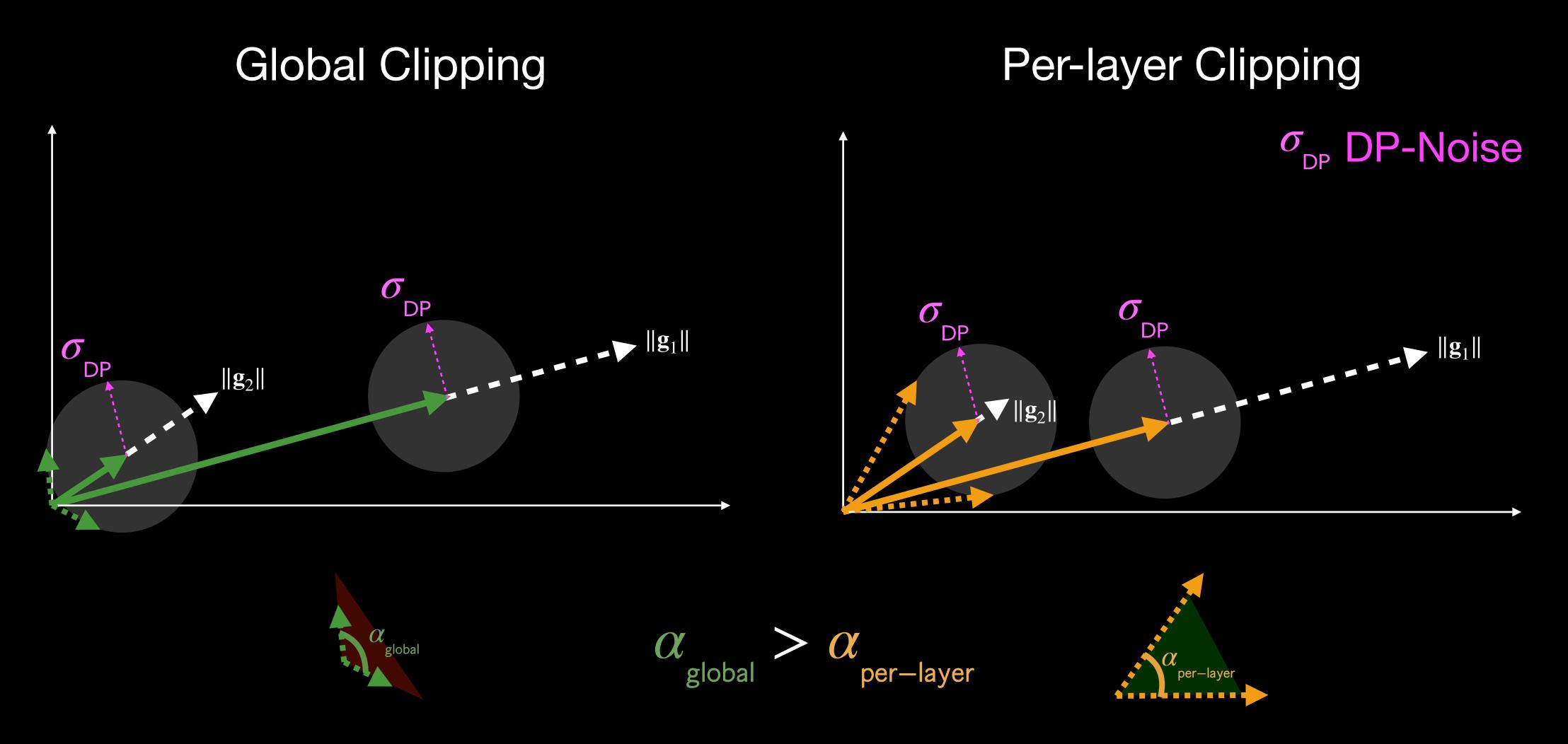


$$\mathsf{Clip}_{\mathsf{uniform}}(\mathbf{g}, C) \leftarrow \left\{ \frac{C \, \mathbf{g}_h}{\sqrt{H \|\mathbf{g}_h\|}} \right\}_{h=0}^{H}$$

if
$$\|\mathbf{g}\| > C$$
; $\|\mathbf{g}\| = \sqrt{\|\mathbf{g}_1\|^2 + \|\mathbf{g}_2\|^2}$

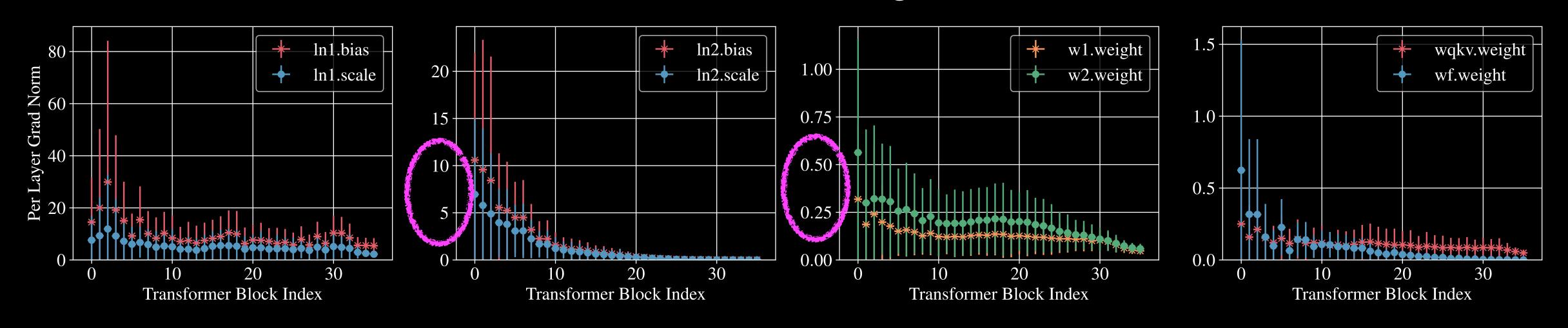
Why is Per-Layer Clipping Important?

Adding DP Noise maintains better signal-to-noise ration (SnR) in per-layer clipping

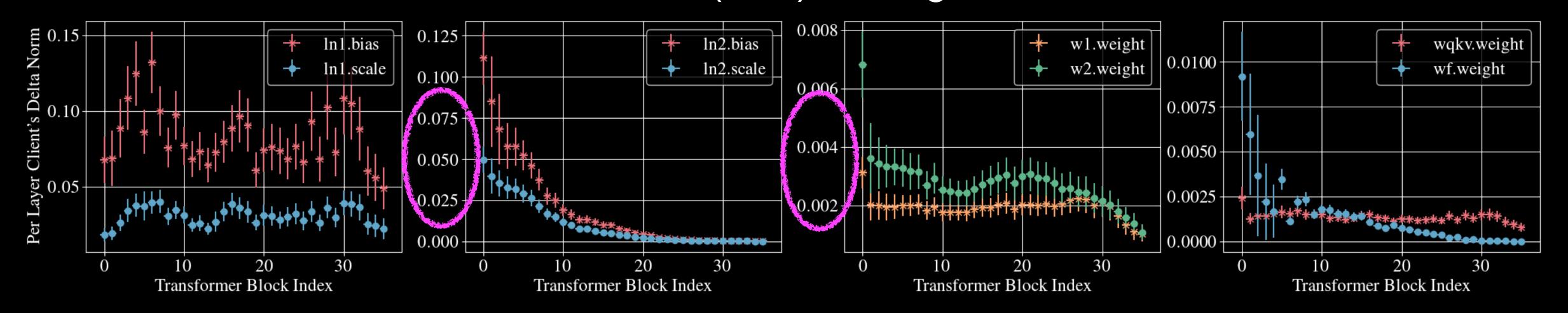


Observing Gradient Imbalance In Practice

Central training



FL (+DP) training



$$\frac{\kappa}{T} \sum_{t=0}^{T-1} E_{\tau} \left[\|\nabla F^{(t)}\|^{2} \right] \leq \mathcal{O}\left(\frac{1}{\sqrt{T}}\right) + \mathcal{O}\left(\frac{\tau \sigma_{glob}^{2}}{T}\right) + \mathcal{O}\left(\frac{\tau \sigma^{2}}{T}\right)$$
optimization global update noise local update noise
$$+ \mathcal{O}\left(C^{2}\sigma_{DP}^{2}\sum_{h=1}^{H}R_{h}^{2}d_{h}\right) + \mathcal{O}\left(\frac{\tau}{T}\sum_{h=1}^{H}\frac{M_{h}^{2}}{C_{h}^{2}}\right)$$
differential privacy noise clipping bias
$$+ \mathcal{O}\left(\frac{\tau}{T}\sum_{h=1}^{H}\frac{R_{h}^{2}M_{h}^{2}}{C_{h}^{2}}\left[\Psi_{h}^{\text{intra}} + \Psi_{h}^{\text{inter}}\right]\right)$$
intra- and inter- client update variance

Intra- and inter-client update variance

lient update variance
$$r_h^{(t)} \triangleq \frac{\|\boldsymbol{\theta}_h^{(t)}\|}{\|\mathbf{u}_h^{(t)}\|}; \ \left[\mathbf{u}_h^{(t)}\right]_i = \frac{\left[\mathbf{m}_h^{(t)}\right]_i}{\left[(\mathbf{v}_h^{(t)})^{\frac{1}{2}} + \xi\right]_i}$$
 LAMB trust ratio for layer h gradient norm of layer h
$$\frac{\kappa}{T} \sum_{t=0}^{T-1} E_{\tau} \left[\|\nabla F^{(t)}\|^2\right] \leq \cdots + \mathcal{O}\left(\frac{\tau}{T} \sum_{h=1}^{H} \frac{R_h^2 M_h^2}{C_h^2} \left[\Psi_h^{\text{intra}} + \Psi_h^{\text{inter}}\right]\right)$$

clipping constant for layer h

Intra- and inter-client update variance

$$\frac{\kappa}{T} \sum_{t=0}^{T-1} E_{\tau} \left[\|\nabla F^{(t)}\|^2 \right] \leq \dots + \mathcal{O}\left(\frac{\tau}{T} \sum_{h=1}^{H} \frac{R_h^2 M_h^2}{C_h^2} \left[\Psi_h^{\text{intra}} + \Psi_h^{\text{inter}} \right] \right)$$

- shuffling data on clients,
- data augmentation,
- increasing batch size, etc.

- server-side adaptive optimization,
- anchored optimization such as FedProx,
- weighted averaging of client updates, etc.

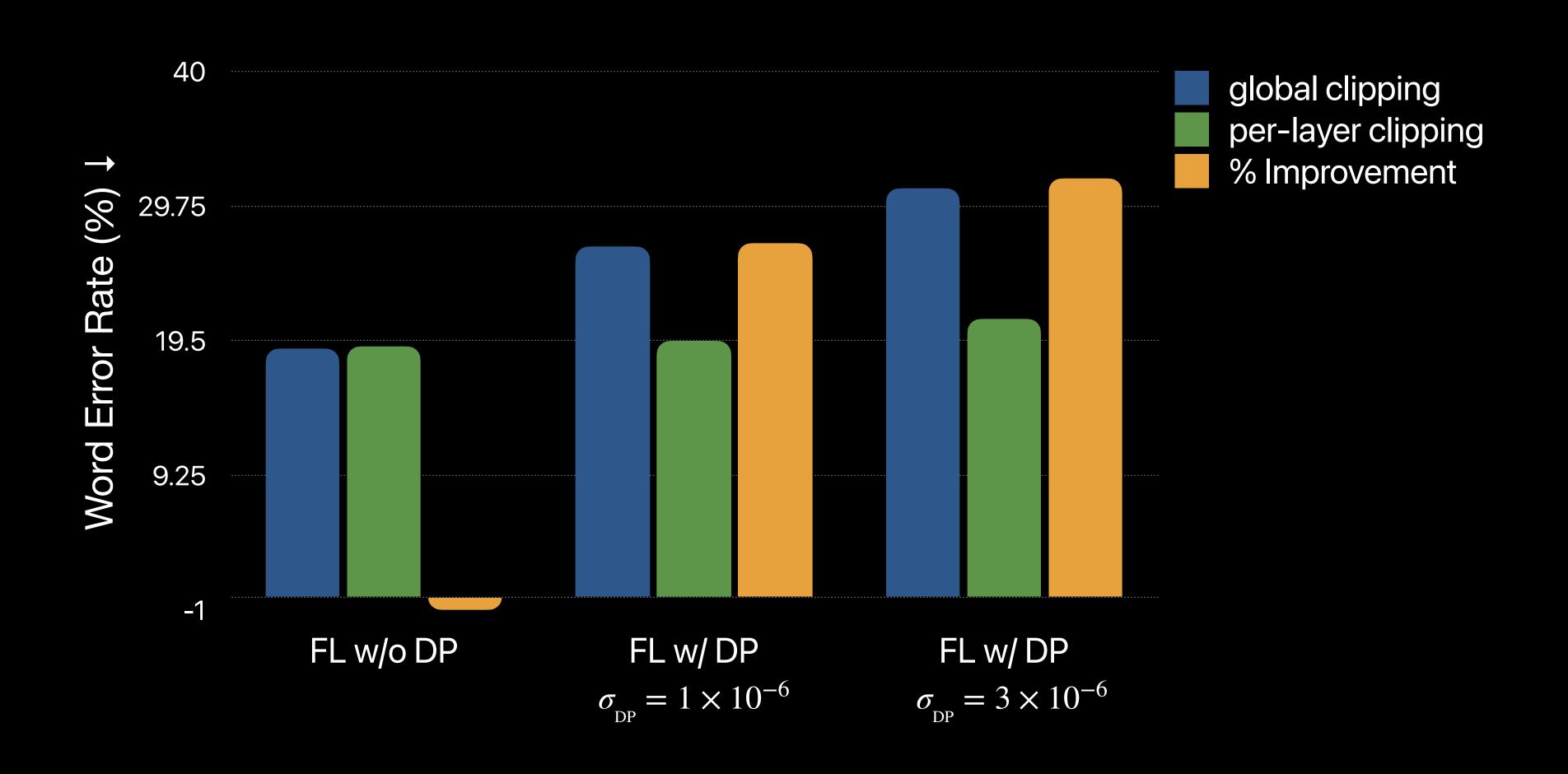
Per-layer intervention should yield better result with deeper models

$$\frac{\kappa}{T} \sum_{t=0}^{T-1} E_{\tau} \left[\|\nabla F^{(t)}\|^2 \right] \leq \dots + \mathcal{O}\left(\frac{\tau}{T} \sum_{h=1}^{H} \frac{R_h^2 M_h^2}{C_h^2} \left[\Psi_h^{\text{intra}} + \Psi_h^{\text{inter}} \right] \right)$$

decomposition over layers yields a tighter bound for networks with more heterogeneous layers

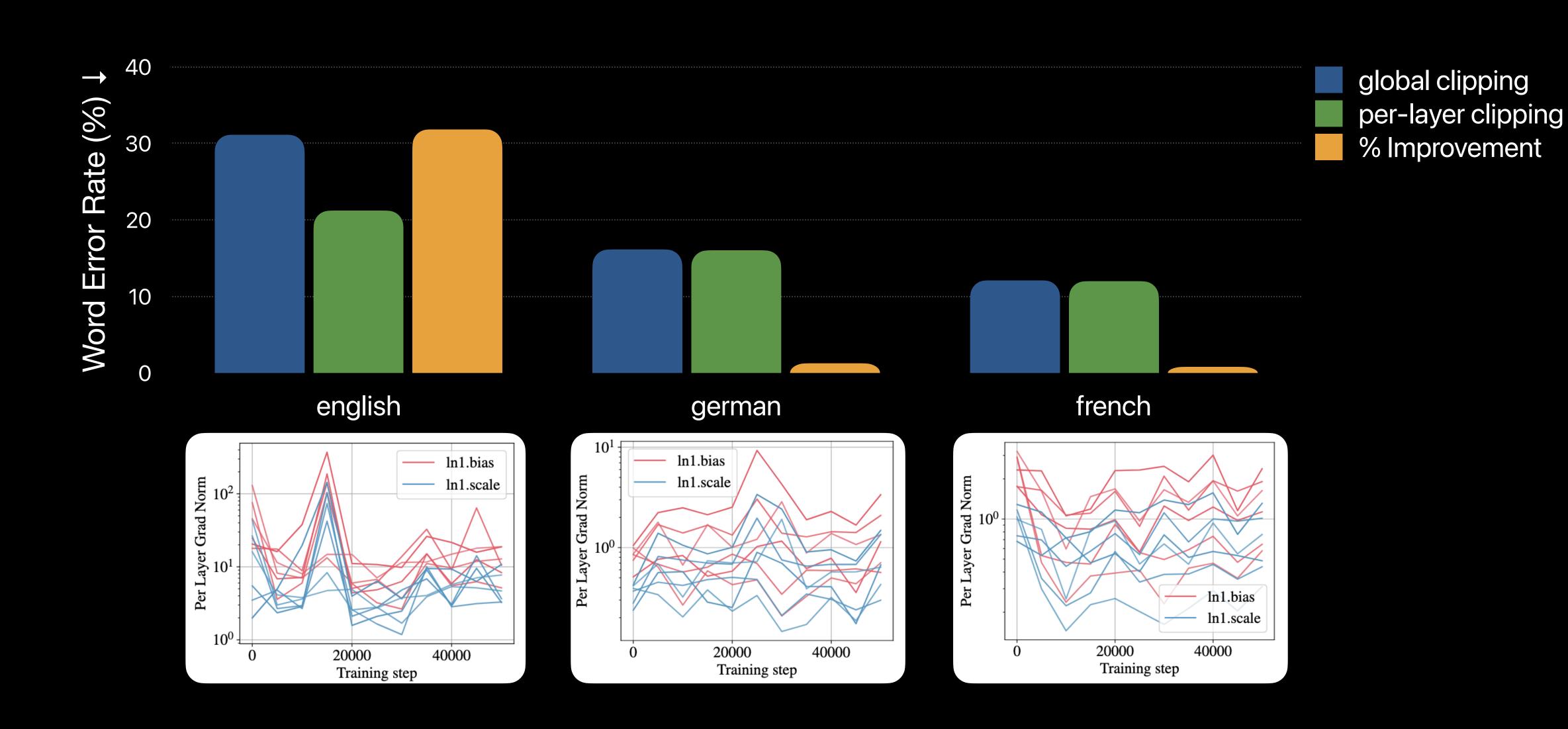
Empirical Support for Theoretical Analysis

As DP noise increases, so does the impact of LAMB + per-layer clipping



Empirical Support for Theoretical Analysis

Higher the intra-layer heterogeneity, higher the improvements



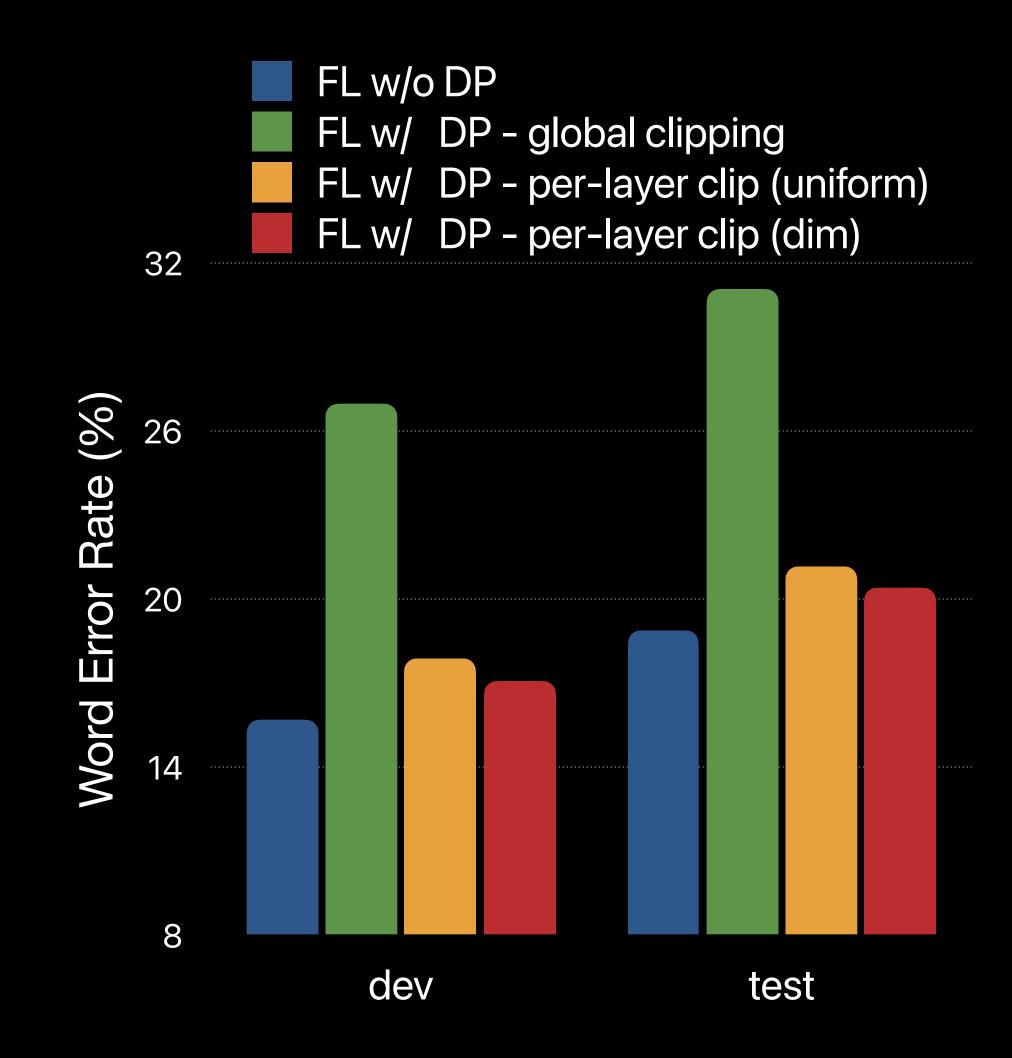
Key Takeaways

Recap of Per-layer Intervention

First benchmark for FL with DP in ASR

Detailed study that includes

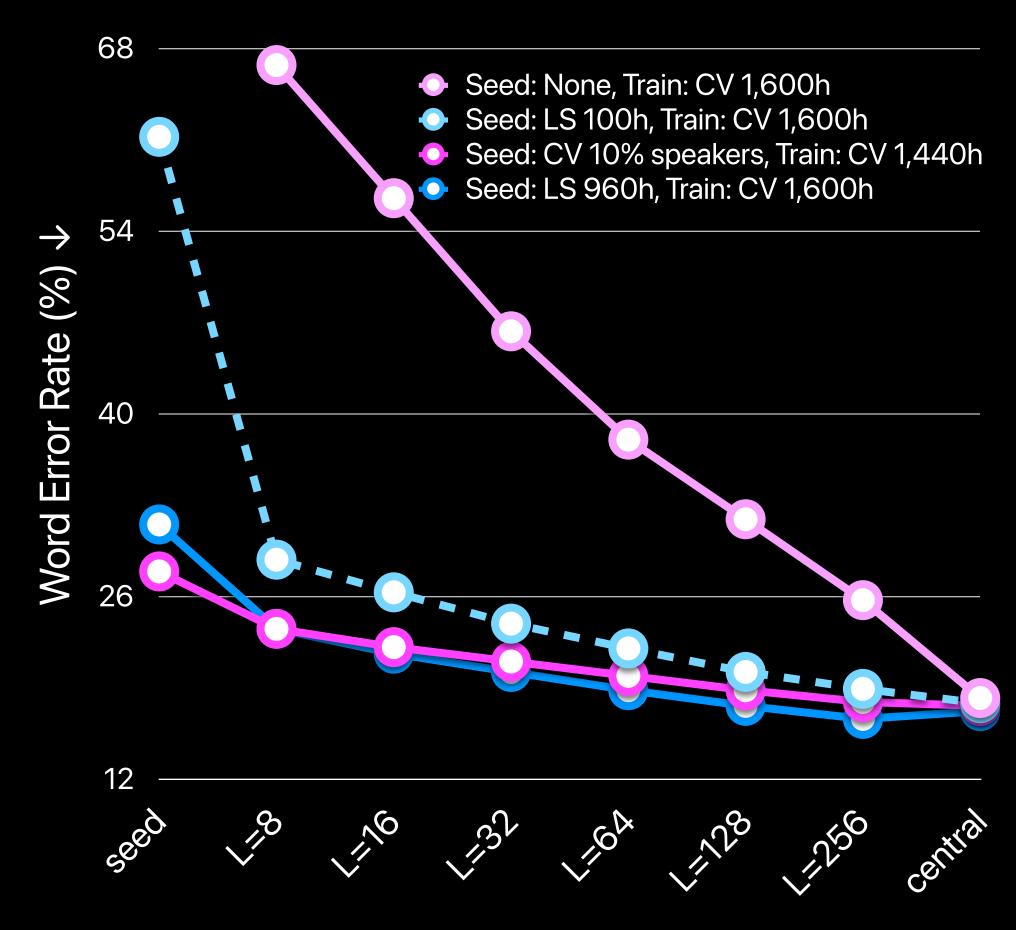
- DP training with per-layer clipping
- layer-wise adaptive optimization
- impact of model size on FL with DP
- theoretically-backed convergence proof
- empirical evidence of theoretical analysis
 - recovery of prior bounds as special case



Other Contributions

Comprehensive study of FL factors:

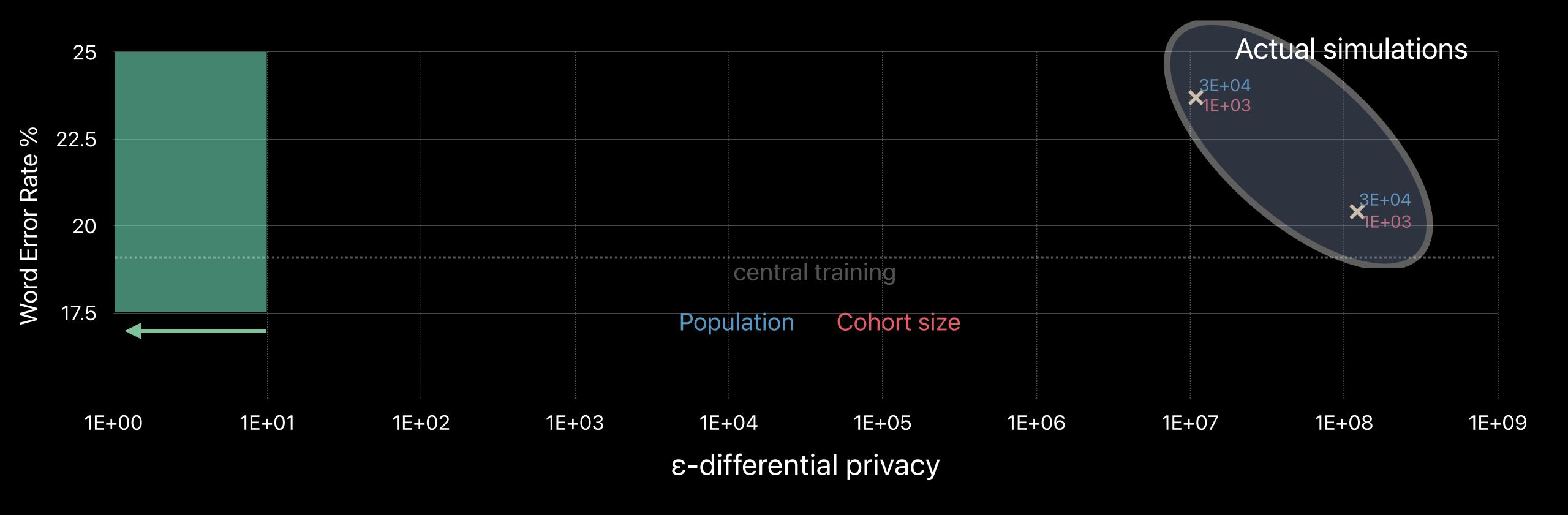
- data heterogeneity
 - among clients
 - among seed data and FL data
- optimization hyperparameters
 - optimizer: LAMB, LARS, Adam, etc.
 - · cohort size, clipping, layer norm, etc.
 - prior works: SpecAugment, FedProx, etc.



L is the number of clients participating in each FL aggregation round

(ϵ, δ) -DP Guarantees

Central seed (train on LS 100h) is fine-tuned with FL & DP (train on CV 1,500h)



(ϵ, δ) -DP Guarantees

Central seed (train on LS 100h) is fine-tuned with FL & DP (train on CV 1,500h)

Get *practical* {quality, (ϵ, δ) -DP} with extrapolation to larger population and cohort

